Estimation of evapotranspiration from UAV high-resolution images for irrigation systems in rice fields on the northern coast of Peru
DOI:
https://doi.org/10.17268/sci.agropecu.2024.001Keywords:
Oryza sativa, alternating wetting and drying, water stress, energy balance, unmanned aerial vehicle, remote sensingAbstract
In view of the growing scarcity of water for agriculture, the increase in food demand and future drought scenarios posed by climate change, it is essential to design new technologies that contribute to lower water consumption. In this research, high-resolution images have been used to estimate evapotranspiration in rice fields by applying the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) energy balance model. For this purpose, 5900 m2 of crop were monitored under continuous flood irrigation (CF) and 2600 m2 under alternate wetting and drying irrigation (AWD), in addition to some plots with lateral filtration. Ten flights were conducted between tillering and flowering phases, five flights with a Matrice 210 UAV equipped with a Parrot Sequoia multispectral camera, and five flights with a Matrice 300 RTK equipped with a H20T thermal camera. Field data were collected from vegetation indices (NDVI and LAI), and readings from a radiometer, to adjust information from multispectral and thermal images, respectively, and to obtain the components of the surface energy balance. Mean values for crop evapotranspiration (ETc) of 6.34 ± 1.49 and 5.84 ± 0.41 mm d-1 were obtained for IC irrigation and AWD irrigation, respectively, obtaining a water saving of 42% with a yield reduction of 14%, providing a guide for proper irrigation management, however, it is suggested to use the model to optimize yield by obtaining critical thresholds for optimal application of AWD in the face of water resource scarcity.
Keywords: Rice fields, AWD; Evapotranspiration; METRIC; UAV.
References
Acharya, B., & Sharma, V. (2021). Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region. In Remote Sensing, 13(9), 1822.
Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., & Robison, C. W. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395–406.
Allen, R., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011–4027.
Bastiaanssen, W., Menenti, M., Feddes, R., & Holtslag, A. (1998). A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212–213, 198–212.
Bhattarai, N., Quackenbush, L. J., Im, J., & Shaw, S. B. (2017). A new optimized algorithm for automating endmember píxel selection in the SEBAL and METRIC models. Remote Sensing of Environment, 196, 178–192.
Cheng, H., Shu, K., Zhu, T., Wang, L., Liu, X., Cai, W., Qi, Z., & Feng, S. (2022). Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields. Journal of Cleaner Production, 349, 131487.
Chu, G., Chen, T., Chen, S., Xu, C., Wang, D., & Zhang, X. (2018). The effect of alternate wetting and severe drying irrigation on grain yield and water use efficiency of Indica-japonica hybrid rice (Oryza sativa L.). Food and Energy Security, 7(2), e00133.
Djaman, K., Rudnick, D. R., Moukoumbi, Y. D., Sow, A., & Irmak, S. (2019). Actual evapotranspiration and crop coefficients of irrigated lowland rice (Oryza sativa L.) under semiarid climate. Italian Journal of Agronomy, 14(1), 19-25.
De la Cruz, K. M. S., Ella, V. B., & Lampayan, R. M. (2022). A coupled surface-subsurface flow model for simulating soil-water dynamics in lowland rice field under alternate wetting and drying conditions. Agricultural Water Management, 265, 107541.
FAOSTAT. 2023. Datos sobre alimentación y agricultura. División de Estadística de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). www.fao.org/faostat/en/#data/QC.
Fan, L., Gao, Y., Brück, H., & Bernhofer, Ch. (2009). Investigating the relationship between NDVI and IAF in semi-arid grassland in Inner Mongolia using in-situ measurements. Theoretical and Applied Climatology, 95(1-2), 151-156.
Fornasiero, A., Wing, R. A., & Ronald, P. (2022). Rice domestication. Current Biology, 32(1), R20-R24
Gao, S., Gu, Q., Gong, X., Li, Y., Yan, S., & Li, Y. (2023). Optimizing water-saving irrigation schemes for rice (Oryza sativa L.) using DSSAT-CERES-Rice model. International Journal of Agricultural and Biological Engineering, 16(2), 142-151.
Garcia, S., Martinez, L. (2009). Satellite image based method for rice (Oryza sativa L.) crop identification. Agronomía Colombiana 28(2), 281-290.
Gonzalez, M., & Mayorga-Ruíz, Z. L. (2018). Normalized difference vegetation index for rice management in El Espinal, Colombia. DYNA, 85(205), 47-56.
Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., & Friborg, T. (2016), Estimating Evaporation with Thermal UAV Data and Two-source Energy Balance Models. Hydrol. Earth Syst. Sci., 20, 697–713.
Hussain, Z., Wang, Z., Wang, J., Yang, H., Arfan, M., Hassan, D., Wang, W., Azam, M. I., & Faisal, M. (2022). A comparative Appraisal of Classical and Holistic Water Scarcity Indicators. Water Resources Management, 36(3), 931-950.
Ishfaq, M., Farooq, M., Zulfiqar, U., Hussain, S., Akbar, Ahmad, N., Nawaz, A., & Ahmad Anjum, S. (2020). Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural Water Management, 241, 1-22.
Jiang, Y., Carrijo, D., Huang, S., Chen, J., Balaine, N., Zhang, W., Groenigen, K., & Linquist, B. (2019). Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 234, 47-54.
Lee, Y., & Kim, S. (2016). The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sensing, 8(12), 983.
Liu, X., Xu, J., Yang, S., & Zhang, J. (2018). Rice evapotranspiration at the field and canopy scales under water-saving irrigation. Meteorology and Atmospheric Physics, 130(2), 227-240.
Mendoza, C, Ramírez, C, Ojeda, W, Instituto Mexicano de Tecnología del Agua, Flores, H, & Colegio de Postgraduados. (2017). Estimation of leaf area index and yield of greenhouse-grown poblano pepper. Ingeniería Agrícola y Biosistemas, 9(1), 37-50.
Mote, K., Rao, V. P., Ramulu, V., Kumar, K. A., & Devi, M. U. (2022). Performance of rice (Oryza sativa (L.)) under AWD irrigation practice—A brief review. Paddy and Water Environment, 20(1), 1-21.
Morton, C. G., Huntington, J. L., Pohll, G. M., Allen, R. G., Mcgwire, K. C., & Bassett, S. D. (2013). Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. Journal of the American Water Resources Association, 49(3), 549–562.
Nassar, A., Torres‐Rua, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., Nieto, H., Alsina, M. M., White, W., McKee, L., Coopmans, C., Sanchez, L., & Dokoozlian, N. (2021). Assessing daily evapotranspiration methodologies from one‐time‐of‐day suas and ec information in the grapex project. Remote Sensing, 13(15), 2887.
Neira, E., Ramos-Fernández, L., & Ramón, L. (2020). Coefficient of cropping (Kc) of rice from drain lysimeter in The Molina, Lima-Perú. IDESIA (Chile). Lima-Perú. 38(1), 1-7
Niu, H., Hollenbeck, D., Zhao, T., Wang, D., & Chen, Y. (2020). Evapotranspiration estimation with small uavs in precision agriculture. Sensors, 20(22), 1–28.
Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C., Ahumada-Orellana, L., Zuñiga, M., & Sepúlveda, D. (2016). Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV)
Ouda, S., & Zohry, A. E. H. (2022). Water-Smart Practices to Manage Water Scarcity. En S. Ouda & A. E.-H. Zohry, Climate-Smart Agriculture (pp. 3-26). Springer International Publishing.
Pintér, K., & Nagy, Z. (2022). Building a UAV Based System to Acquire High Spatial Resolution Thermal Imagery for Energy Balance Modelling. Sensors, 22(9), 3251.
Porras, R., Ramos, L., Ojeda, W., & Ontiveros, R. (2020). Performance assessment of the AquaCrop model to estimate rice yields under alternate wetting and drying irrigation in the coast of Peru. Scientia Agropecuaria, 11(3), 309 – 321.
Quille, J., Ramos-Fernández, L., & Ontiveros, R. (2021). Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes RPA. Asociación Española de Teledetección, 58, 23-38.
Rahman, M. M., Hasan, S., Ahmed, Md. R., & Adham, A. K. M. (2022). Recycling deep percolated water in continuously flooding irrigated rice fields to mitigate water scarcity. Paddy and Water Environment, 20, 449–466.
Ramírez-Cuesta, J.M., Allen, R.G., Zarco-Tejada, P.J., Kilic, A., Santos, C., & Lorite, I.J. 2019. Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. International Journal of Applied Earth Observation and Geoinformation, 7, 88-102.
Río, O., Espinoza, T., Sáenz, A., & Córtes, F. (2019). Levantamientos Topográficos con Drones. Revista Ciencia, Ingeniería y Desarrollo Tec Lerdo, 1(5), 15-19.
Roy, D., Hossain, Md. B., Pranto, M. R. B. H., & Islam, Md. T. (2022). Drought Management by Integrated Approaches in T. Aman Rice Season to Escalate Rice Productivity in Drought Prone Regions of Bangladesh. En G. M. Tarekul Islam, S. Shampa, & A. I. A. Chowdhury (Eds.), Water Management: A View from Multidisciplinary Perspectives (pp. 351-364). Springer International Publishing.
Saha, S., Ahmmed R., & Jahan N. (2022). Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of Sebal and Metric Models. In: Tarekul Islam GM, Shampa S., Chowdhury AIA (eds) Water Management: A View from Multidisciplinary Perspectives. Springer, Cham. 365 – 383.
Sawadogo, A., Kouadio, L., Traoré, F., Zwart, S. J., Hessels, T., & Gündoğdu, K. S. (2020). Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS International Journal of Geo-Information, 9(8), 484.
Sisheber, B, Marshall, M, Mengistu, D, & Nelson, A. (2022). Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation, 106, 102670.
Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226, 105805.
Taherparvar, M., & Pirmoradian, N. (2018). Estimation of Rice Evapotranspiration Using Reflective Images of Landsat Satellite in Sefidrood Irrigation and Drainage Network. Rice Science, 25(2), 111-116.
Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226, 105805.
Torres-Rua, A. (2017). Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature. Sensors, 17(7), 1499.
Wei, G., Cao, J., Xie, H., Xie, H., Yang, Y., Wu, C., Cui, Y., & Luo, Y. (2022). Spatial-Temporal Variation in Paddy Evapotranspiration in Subtropical Climate Regions Based on the SEBAL Model: A Case Study of the Ganfu Plain Irrigation System, Southern China. Remote Sensing, 14(5), 1201.
Wei, J., Cui, Y., & Luo, Y. (2023). Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation. Agricultural Water Management, 278, 108141.
Yu, Q., Cui, Y., Han, H., & Liao, B. (2023). Modelling water consumption and nitrogen loss in paddy fields with an improved ORYZA model. Field Crops Research, 292, 108828
Zobeidi, T., Yaghoubi, J., & Yazdanpanah, M. (2022). Farmers’ incremental adaptation to water scarcity: An application of the model of private proactive adaptation to climate change (MPPACC). Agricultural Water Management, 264, 10752.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).