Sensory and consumer science as a valuable tool to the development of quinoa-based food products: More than three decades of scientific evidence

Authors

  • Karina Eduardo Sensory Analysis and Consumers Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua https://orcid.org/0009-0009-0102-9343
  • Noelia Bedoya-Perales Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua https://orcid.org/0000-0002-9213-7076
  • Elias Escobedo-Pacheco Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua https://orcid.org/0000-0002-8256-2546
  • Erick Saldaña Sensory Analysis and Consumers Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua https://orcid.org/0000-0002-4018-2852

DOI:

https://doi.org/10.17268/sci.agropecu.2024.019

Keywords:

Sensory acceptance, Bibliometric analysis, Chenopodium quinoa Willd, Hedonic Scale

Abstract

Solutions are needed to address both hunger and the promotion of healthy and sustainable diets. Quinoa, a nutritious and sustainable Andean grain, is a versatile option for creating new foods. Over the years, several technological advancements have been made to include quinoa in various food products. However, there is still a need for solid scientific evidence on the impact of quinoa on the product's acceptance. To address this scientific knowledge gap, this work aims to analyze the scientific literature over the last three decades regarding the sensory and hedonic impact of adding quinoa to food products. To do so, bibliometric methods based on the Scopus and Annual Scientific Production databases were used. After selecting and screening using the PRISMA method, seventy-four articles from 1991 to 2024 were analyzed, identifying relationships between keywords in the analyzed studies, forming a co-occurrence and co-authorship network. Results showed that quinoa has great nutritional potential when added to different food products, but its instrumental and sensory properties are modified. The nine-point hedonic scale was used to measure product acceptability in 47% of the articles. Studies on bakery products have shown that increasing the concentration of quinoa in the product formulation decreases the acceptance of the final product in 67% of cases. It is recommended to include consumer demands from a sensory and hedonic perspective when developing new products. The scientific and industrial community is encouraged to develop new food products catering to a broader consumer range.

References

Abdelmontaleb, H. S., Othman, F. A., Degheidi, M. A., & Abbas, K. A. (2021). The influence of quinoa flour addition on the physicochemical, antioxidant activity, textural, and sensory characteristics of UF-soft cheese during refrigerated storage. Journal of Food Processing and Preservation, 45(5). https://doi.org/10.1111/jfpp.15494

Aguiar, E. V, Santos, F. G., Krupa-Kozak, U., & Capriles, V. D. (2023). Nutritional facts regarding commercially available gluten-free bread worldwide: Recent advances and future challenges. Critical Reviews in Food Science and Nutrition, 63(5), 693–705. https://doi.org/10.1080/10408398.2021.1952403

Agza, B., Bekele, R., & Shiferaw, L. (2018). Quinoa (Chenopodium quinoa, Wild.): As a potential ingredient of injera in Ethiopia. Journal of Cereal Science, 82, 170–174. https://doi.org/10.1016/j.jcs.2018.06.009

Alencar, N. M. M., de Morais, E. C., Steel, C. J., & Bolini, H. M. A. (2017). Sensory characterisation of gluten-free bread with addition of quinoa, amaranth flour and sweeteners as an alternative for coeliac patients. International Journal of Food Science and Technology, 52(4), 872–879. https://doi.org/10.1111/ijfs.13349

Almaayta, A., Al-Maseimi, O., & Abu-Alruz, K. (2023). Enrichment of Taboun Bread with Quinoa Seeds as a Functional Ingredient. Current Research in Nutrition and Food Science, 11(2), 844–865. https://doi.org/10.12944/CRNFSJ.11.2.33

Alvarez-Jubete, L., Auty, M., Arendt, E. K., & Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230(3), 437–445. https://doi.org/10.1007/s00217-009-1184-z

Amiryousefi, M., Tadayon, M. R., & Ebrahimi, R. (2021). Energy and exergy efficiencies assessment for two Quinoa cultivars productions. Energy Reports, 7, 2324–2331. https://doi.org/10.1016/j.egyr.2021.04.043

Ares, G., & Varela, P. (2017). Trained vs. consumer panels for analytical testing: Fueling a long lasting debate in the field. Food Quality and Preference, 61, 79–86. https://doi.org/10.1016/j.foodqual.2016.10.006

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Arjmand, S., Mollakhalili-Meybodi, N., Akrami Mohajeri, F., Madadizadeh, F., & Khalili Sadrabad, E. (2023). Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Science and Nutrition. https://doi.org/10.1002/fsn3.3679

Ávila, B. P., Braganca, G. C. M., Rockenbach, R., Alves, G. D., Monks, J., Gularte, M. A., & Elias, M. C. (2017). Physical and sensory characteristics of cake prepared with six whole-grain flours. Journal of Food Measurement and Characterization, 11(3), 1486–1492. https://doi.org/10.1007/s11694-017-9527-0

Ayub, M., Castro-Alba, V., & Lazarte, C. E. (2021). Development of an instant-mix probiotic beverage based on fermented quinoa with reduced phytate content. Journal of Functional Foods, 87. https://doi.org/10.1016/j.jff.2021.104831

Bahmanyar, F., Hosseini, S. M., Mirmoghtadaie, L., & Shojaee-Aliabadi, S. (2021). Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Science, 172, 108305. https://doi.org/10.1016/j.meatsci.2020.108305

Baioumy, A. A., Bobreneva, I. V., Tvorogova, A. A., & Shobanova, T. V. (2018). Possibility of using quinoa seeds (Chenopodium quinoa) in meat products and its impact on nutritional and organoleptic characteristics. Bioscience Research, 15(4), 3307–3315.

Ballester-Sánchez, J., Yalcin, E., Fernández-Espinar, M. T., & Haros, C. M. (2019). Rheological and thermal properties of royal quinoa and wheat flour blends for breadmaking. European Food Research and Technology, 245(8), 1571–1582. https://doi.org/10.1007/s00217-019-03265-5

Baranda, A. B., Ríos, Y., Llorente, R., Naranjo, A. B., & da Quinta, N. (2024). Neuroscience tools to study the effect of the presentation form on food-evoked emotion for senior population. Food Research International, 183, 114158. https://doi.org/10.1016/j.foodres.2024.114158

Bendezu-Ccanto, J., Contreras-López, E., & Lozada-Urbano, M. (2023). Development and characterization of an optimized novel drink from three varieties of sprouted quinoa. African Journal of Food, Agriculture, Nutrition and Development, 23(7), 24091–24114. https://doi.org/10.18697/ajfand.122.22435

Bianchi, F., Rossi, E. A., Gomes, R. G., & Sivieri, K. (2014). Potentially symbiotic fermented beverage with aqueous extracts of quinoa (Chenopodium quinoa Willd) and soy. Food Science and Technology International, 21(6), 403–415. https://doi.org/10.1177/1082013214540672

Bicudo, M. O. P., Vasques, E. C., Zuim, D. R., & Candido, L. M. B. (2012). Elaboração e caracterização de bebida fermentada à base de extrato hidrossolúvel de quinoa com polpa de frutas. Boletim Centro de Pesquisa de Processamento de Alimentos, 30(1), 19–26.

Brito, I. L., de Souza, E. L., Felex, S. S. S., Madruga, M. S., Yamashita, F., & Magnani, M. (2015). Nutritional and sensory characteristics of gluten-free quinoa (Chenopodium quinoa Willd)-based cookies development using an experimental mixture design. Journal of Food Science and Technology, 52(9), 5866–5873. https://doi.org/10.1007/s13197-014-1659-1

Caperuto, L. C., Amaya-Farfan, J., & Camargo, C. R. O. (2001). Performance of quinoa (Chenopodium quinoa Willd) flour in the manufacture of gluten-free spaghetti. Journal of the Science of Food and Agriculture, 81(1), 95–101. https://doi.org/10.1002/1097-0010(20010101)81:1<95::AID-JSFA786>3.0.CO;2-T

Capriles, V. D., Valéria de Aguiar, E., Garcia dos Santos, F., Fernández, M. E. A., de Melo, B. G., Tagliapietra, B. L., Scarton, M., Clerici, M. T. P. S., & Conti, A. C. (2023). Current status and future prospects of sensory and consumer research approaches to gluten-free bakery and pasta products. Food Research International, 173, 113389. https://doi.org/10.1016/j.foodres.2023.113389

Castura, J. C., Antúnez, L., Giménez, A., & Ares, G. (2016). Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Quality and Preference, 47, 79–90. https://doi.org/10.1016/j.foodqual.2015.06.017

Chen, Y. P., Ding, Z., Yu, Y., He, P., Zhou, Y., Liu, Y., & Feng, X. (2023). Recent advances in investigating odor-taste interactions: Psychophysics, neuroscience, and microfluidic techniques. Trends in Food Science & Technology, 138, 500–510. https://doi.org/10.1016/j.tifs.2023.06.019

Chilón-Llico, R., Siguas-Cruzado, L., Apaza-Humerez, C. R., Morales-García, W. C., & Silva-Paz, R. J. (2022). Protein Quality and Sensory Perception of Hamburgers Based on Quinoa, Lupin and Corn. Foods, 11(21). https://doi.org/10.3390/foods11213405

Chiș, M. S., Păucean, A., Stan, L., Suharoschi, R., Socaci, S. A., Man, S. M., Pop, C. R., & Muste, S. (2019). Impact of protein metabolic conversion and volatile derivatives on gluten-free muffins made with quinoa sourdough. CYTA - Journal of Food, 17(1), 744–753. https://doi.org/10.1080/19476337.2019.1646320

Cizeikiene, D., Gaide, I., & Basinskiene, L. (2021). Effect of lactic acid fermentation on quinoa characteristics and quality of quinoa-wheat composite bread. Foods, 10(1). https://doi.org/10.3390/foods10010171

Coţovanu, I., Mironeasa, C., & Mironeasa, S. (2023). Nutritionally Improved Wheat Bread Supplemented with Quinoa Flour of Large, Medium and Small Particle Sizes at Typical Doses. Plants, 12(4). https://doi.org/10.3390/plants12040698

Coulter, L. A., & Lorenz, K. (1991). Extruded corn grits-quinoa blends. Journal of Food Processing and Preservation, 15(4), 231–242. https://doi.org/10.1111/j.1745-4549.1991.tb00169.x

Curia, A. V., Hough, G., Martı́nez, M. C., & Margalef, M. I. (2001). How Argentine consumers understand the Spanish translation of the 9-point hedonic scale. Food Quality and Preference, 12(3), 217–221. https://doi.org/10.1016/S0950-3293(01)00012-X

Curti, C. A., Vidal, P. M., Curti, R. N., & Ramón, A. N. (2017). Chemical characterization, texture and consumer acceptability of yogurts supplemented with quinoa flour. Food Science and Technology (Brazil), 37(4), 627–631. https://doi.org/10.1590/1678-457x.27716

Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food Chemistry, 299, 125161. https://doi.org/10.1016/j.foodchem.2019.125161

de Souza, A. H. P., Gohara, A. K., Pagamunici, L. M., Visentainer, J. V., de Souza, N. E., & Matsushita, M. (2014). Desenvolvimento, caracterização e análise quimiométrica de granolas isentas de glúten, contendo farinha integral de nov. Acta Scientiarum - Technology, 36(1), 157–163. https://doi.org/10.4025/actascitechnol.v36i1.19195

DeBruyne, A. N., & Hekmat, S. (2024). The effects of fortification of yogurt with various functional flours on survival and growth of probiotic bacteria and sensory properties of the yogurt. Nutrition & Food Science, 54(3), 597–612. https://doi.org/10.1108/NFS-11-2023-0257

Deliza, R., Lima, M. F., & Ares, G. (2021). Rethinking sugar reduction in processed foods. Current Opinion in Food Science, 40, 58–66. https://doi.org/10.1016/j.cofs.2021.01.010

El-Said, E. Th., Soliman, A. Sh., Abbas, M. S., & Aly, S. E. (2021). Treatment of anaemia and malnutrition by Shamy bread fortified with spirulina, quinoa and chickpea flour. Egyptian Journal of Chemistry, 64(5), 2253–2268. https://doi.org/10.21608/EJCHEM.2021.55922.3195

El-Sohaimy, S., Shehata G., M., Djapparovec, T. A., Mehany, T., Zeitoun A., M., & Zeitoun M., A. (2021). Development and characterization of functional pan bread supplemented with quinoa flour. Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.15180

Fernández-Diez, A., Caro, I., Castro, A., Salvá, B. K., Ramos, D. D., & Mateo, J. (2016). Partial Fat Replacement by Boiled Quinoa on the Quality Characteristics of a Dry-Cured Sausage. Journal of Food Science, 81(8), C1891–C1898. https://doi.org/10.1111/1750-3841.13393

Föste, M., Nordlohne, S. D., Elgeti, D., Linden, M. H., Heinz, V., Jekle, M., & Becker, T. (2014). Impact of quinoa bran on gluten-free dough and bread characteristics. European Food Research and Technology, 239(5), 767–775. https://doi.org/10.1007/s00217-014-2269-x

García-Ramón, F., Sotelo-Méndez, A., Alvarez-Chancasanampa, H., Norabuena, E., Sumarriva, L., et al. (2023). Influence of Peruvian Andean grain flours on the nutritional, rheological, physical, and sensory properties of sliced bread. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1202322

Gewehr, M. F., Danelli, D., Melo, L. M. D., Flöres, S. H., & Jong, E. V. D. (2017). Nutritional and Technological Evaluation of Bread Made with Quinoa Flakes (Chenopodium quinoa Willd). Journal of Food Processing and Preservation, 41(2). https://doi.org/10.1111/jfpp.12803

Giovanni, M. E., & Pangborn, R. M. (1983). Measurement of Taste Intensity and Degree of Liking of Beverages by Graphic Scales and Magnitude Estimation. Journal of Food Science, 48(4), 1175–1182. https://doi.org/10.1111/j.1365-2621.1983.tb09186.x

González-Calderón, A. K., García-Flores, N. A., Elizondo-Rodríguez, A. S., Zavala-López, M., García-Lara, S., Ponce-García, N., & Escalante-Aburto, A. (2021). Effect of the addition of different vegetal mixtures on the nutritional, functional, and sensorial properties of snacks based on pseudocereals. Foods, 10(10). https://doi.org/10.3390/foods10102271

Gostin, A. I. (2019). Effects of substituting refined wheat flour with wholemeal and quinoa flour on the technological and sensory characteristics of salt-reduced breads. LWT, 114. https://doi.org/10.1016/j.lwt.2019.108412

Goyat, J., Passi, S. J., Suri, S., & Dutta, H. (2018). Development of Chia (Salvia hispanica, L.) and Quinoa (Chenopodium quinoa, L.) seed flour substituted cookies-physicochemical, nutritional and storage studies. Current Research in Nutrition and Food Science, 6(3), 757–769. https://doi.org/10.12944/CRNFSJ.6.3.18

Hough, G., Wakeling, I., Mucci, A., Chambers, E., Gallardo, I. M., & Alves, L. R. (2006). Number of consumers necessary for sensory acceptability tests. Food Quality and Preference, 17(6), 522–526. https://doi.org/10.1016/j.foodqual.2005.07.002

Iglesias-Puig, E., Monedero, V., & Haros, M. (2015). Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT - Food Science and Technology, 60(1), 71–77. https://doi.org/10.1016/j.lwt.2014.09.045

Izaguirre-Torres, D., Málaga-Juárez, J., Chuqui-Diestra, S. R., Velásquez-Ccosi, P. F., & Siche, R. (2020). Neuroscience in the advertising of agri-food products: A beneficial tool or a public health hazard? Scientia Agropecuaria, 11(4), 629–639. https://doi.org/10.17268/sci.agropecu.2020.04.19

Jagelaviciute, J., & Cizeikiene, D. (2021). The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT, 137, 110457. https://doi.org/10.1016/j.lwt.2020.110457

Jamanca-Gonzales, N. C., Ocrospoma-Dueñas, R. W., Quintana-Salazar, N. B., Siche, R., & Silva-Paz, R. J. (2022). Influence of Preferments on the Physicochemical and Sensory Quality of Traditional Panettone. Foods, 11(17). https://doi.org/10.3390/foods11172566

Jan, K. N., Panesar, P. S., & Singh, S. (2018). Textural, in vitro antioxidant activity and sensory characteristics of cookies made from blends of wheat-quinoa grown in India. Journal of Food Processing and Preservation, 42(3). https://doi.org/10.1111/jfpp.13542

Jeon, E. B., Song, M. G., Kim, S. H., Choi, J.-S., Lee, J.-S., & Park, S. Y. (2022). Quality characteristics and antioxidant activities of Korean traditional rice and quinoa-based wine “Makgeolli.” Cereal Chemistry, n/a(n/a). https://doi.org/10.1002/cche.10626

Karovičová, J., Kohajdová, Z., Minarovičová, L., Lauková, M., Greifová, M., Greif, G., & Hojerová, J. (2020). Utilisation of quinoa for development of fermented beverages. Potravinarstvo Slovak Journal of Food Sciences, 14, 465–472. https://doi.org/10.5219/1323

Kef, S., & Arslan, S. (2021). The effects of different dietary fiber use on the properties of kefir produced with cow’s and goat’s milk. Journal of Food Processing and Preservation, 45(6). https://doi.org/10.1111/jfpp.15467

Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food Quality and Preference, 22(8), 733–747. https://doi.org/10.1016/j.foodqual.2011.05.008

Ludena Urquizo, F. E., García Torres, S. M., Tolonen, T., Jaakkola, M., Pena-Niebuhr, M. G., von Wright, A., Repo-Carrasco-Valencia, R., Korhonen, H., & Plumed-Ferrer, C. (2017). Development of a fermented quinoa-based beverage. Food Science and Nutrition, 5(3), 602–608. https://doi.org/10.1002/fsn3.436

Madadi, M., Roshanak, S., Shahidi, F., & Varidi, M. J. (2024). Optimization of a gluten-free sponge cake formulation based on quinoa, oleaster, and pumpkin flour using mixture design methodology. Food Science and Nutrition. https://doi.org/10.1002/fsn3.3977

Maldonado-Alvarado, P., Pavón-Vargas, D. J., Abarca-Robles, J., Valencia-Chamorro, S., & Haros, C. M. (2023). Effect of Germination on the Nutritional Properties, Phytic Acid Content, and Phytase Activity of Quinoa (Chenopodium quinoa Willd). Foods, 12(2). https://doi.org/10.3390/foods12020389

Mammasse, N., & Schlich, P. (2014). Adequate number of consumers in a liking test. Insights from resampling in seven studies. Food Quality and Preference, 31, 124–128. https://doi.org/10.1016/j.foodqual.2012.01.009

McPherson, R. S., & Randall, E. (1985). Line length measurement as a tool for food preference research. Ecology of Food and Nutrition, 17(2), 149–156. https://doi.org/10.1080/03670244.1985.9990888

Meriles, S. P., Piloni, R., Cáceres, G. V., Penci, M. C., Marín, M. A., Ribotta, P., & Martínez, M. L. (2022). Compositional characteristics, texture, shelf-life and sensory quality of snack crackers produced from non-traditional ingredients. International Journal of Food Science and Technology, 57(8), 4689–4696. https://doi.org/10.1111/ijfs.15303

Mosquera, J. A. N., Viteri, O. F. M., Arcia, J. A. U., & Llaguno, S. N. S. (2022). Study of vegetable oils of sacha inchi (Plukenetia huayllabambana), sesamum indicum and peanuts (Arachis hypogaea) and their influence on making vegetable sausages type “Frankfurt” considering bromatological and organoleptic characteristics. Journal of Pharmaceutical Negative Results, 13(3), 623–627. https://doi.org/10.47750/pnr.2022.13.03.091

Moss, R., & McSweeney, M. B. (2022). Effect of quinoa, chia and millet addition on consumer acceptability of gluten-free bread. International Journal of Food Science & Technology, 57(2), 1248–1258. https://doi.org/10.1111/ijfs.15509

O’Sullivan, M. (2020). Salt, Fat and Sugar Reduction: Sensory Approaches for Nutritional Reformulation of Foods and Beverages. In Salt, Fat and Sugar Reduction: Sensory Approaches for Nutritional Reformulation of Foods and Beverages. https://doi.org/10.1016/B978-0-12-819741-7.00013-4

Özgören, E., & Yapar, A. (2022). Some Physicochemical and Sensory Properties of Muffin Cakes Enriched with Quinoa (Chenopodium quinoa Willd.) Flour. Akademik Gida, 20(3), 244–252. https://doi.org/10.24323/akademik-gida.1186935

Pagamunici, L. M., de Souza, A. H. P., Gohara, A. K., Silvestre, A. A. F., Visentainer, J. V., et al. (2014). Multivariate study and regression analysis of gluten-free granola. Food Science and Technology, 34(1), 127–134. https://doi.org/10.1590/S0101-20612014005000005

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906

Park, J. H., Lee, Y. J., Lim, J. G., Jeon, J. H., & Yoon, K. S. (2021). Effect of quinoa (Chenopodium quinoa willd.) starch and seeds on the physicochemical and textural and sensory properties of chicken meatballs during frozen storage. Foods, 10(7). https://doi.org/10.3390/foods10071601

Păucean, A., Man, S. M., Chiş, M. S., Mureşan, V., Pop, C. R., Socaci, S. A., Mureşan, C. C., & Muste, S. (2019). Use of pseudocereals preferment made with aromatic yeast strains for enhancing wheat bread quality. Foods, 8(10). https://doi.org/10.3390/foods8100443

Peñalver, R., Ros, G., & Nieto, G. (2023). Development of Functional Gluten-Free Sourdough Bread with Pseudocereals and Enriched with Moringa oleifera. Foods, 12(21). https://doi.org/10.3390/foods12213920

Peryam & Girardot. (1952). Advanced taste-test method. Food Engineering, 24, 58–61.

Pineau, N., Schlich, P., Cordelle, S., Mathonnière, C., Issanchou, S., Imbert, A., Rogeaux, M., Etiévant, P., & Köster, E. (2009). Temporal Dominance of Sensations: Construction of the TDS curves and comparison with time–intensity. Food Quality and Preference, 20(6), 450–455. https://doi.org/10.1016/j.foodqual.2009.04.005

Pineli, L. de L. de O., Botelho, R. B. A., Zandonadi, R. P., Solorzano, J. L., de Oliveira, G. T., Reis, C. E. G., & Teixeira, D. da S. (2015). Low glycemic index and increased protein content in a novel quinoa milk. LWT - Food Science and Technology, 63(2), 1261–1267. https://doi.org/10.1016/j.lwt.2015.03.094

Romano, A., Masi, P., Bracciale, A., Aiello, A., Nicolai, M. A., & Ferranti, P. (2018). Effect of added enzymes and quinoa flour on dough characteristics and sensory quality of a gluten-free bakery product. European Food Research and Technology, 244(9), 1595–1604. https://doi.org/10.1007/s00217-018-3072-x

Romero, M. C., Fogar, R. A., Rolhaiser, F., Clavero, V. V., Romero, A. M., & Judis, M. A. (2018). Development of gluten-free fish (Pseudoplatystoma corruscans) patties by response surface methodology. Journal of Food Science and Technology, 55(5), 1889–1902. https://doi.org/10.1007/s13197-018-3106-1

Rosell, C. M., Cortez, G., & Repo-Carrasco, R. (2009). Breadmaking Use of Andean Crops Quinoa, Kañiwa, Kiwicha, and Tarwi. Cereal Chemistry, 86(4), 386–392. https://doi.org/10.1094/CCHEM-86-4-0386

Rybicka, I., Doba, K., & Bińczak, O. (2019). Improving the sensory and nutritional value of gluten-free bread. International Journal of Food Science and Technology, 54(9), 2661–2667. https://doi.org/10.1111/ijfs.14190

Saed, B., El-Waseif, M., Ali, H., Alsulami, T., Ban, Z., & Farouk, A. (2023). Improving the Nutritional Value and Physical Properties of Gluten-Free Mushroom Soup by Substituting Rice Flour with Quinoa Seed Flour. Processes, 11(12). https://doi.org/10.3390/pr11123287

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), 6. https://doi.org/10.1186/s43014-020-0020-5

Sciammaro, L., Ferrero, C., & Puppo, C. (2018). Physicochemical and nutritional characterization of sweet snacks formulated with Prosopis alba flour. LWT, 93, 24–31. https://doi.org/10.1016/j.lwt.2018.03.019

Sekhavatizadeh, S. S., Karimi, A., Hosseinzadeh, S., Shaviklo, A., Abedi, M., Mahmoodianfard, H., & Ghaedmohammadi, M. (2023). Nutritional and sensory properties of low-fat milk dessert enriched with quinoa (Chenopodium quinoa Willd) Titicaca protein isolate. Food Science and Nutrition, 11(1), 516–526. https://doi.org/10.1002/fsn3.3082

Silva-Paz, R. J., Silva-Lizárraga, R. R., Jamanca-Gonzales, N. C., & Eccoña-Sota, A. (2023). Evaluation of the physicochemical and sensory characteristics of gluten-free cookies. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1304117

Soliman, A. S., Abbas, M. S., Abol-Ella, M. F., Eassawy, M. M. T., & Mohamed, R. H. (2019). Towards bridging wheat gap in Egypt by using cassava, quinoa and guar as supplements for the production of balady bread. Journal of Food Measurement and Characterization, 13(3), 1873–1883. https://doi.org/10.1007/s11694-019-00106-7

Suárez-Estrella, D., Torri, L., Pagani, M. A., & Marti, A. (2018). Quinoa bitterness: causes and solutions for improving product acceptability. In Journal of the Science of Food and Agriculture (Vol. 98, Issue 11, pp. 4033–4041). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.8980

Subramani, D., Tamilselvan, S., Murugesan, M., & Shivaswamy, M. S. (2020). Optimization of sand puffing characteristics of quinoa using response surface methodology. Current Research in Nutrition and Food Science, 8(2), 504–515. https://doi.org/10.12944/CRNFSJ.8.2.16

Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., Brinsden, H., Calvillo, A., De Schutter, O., Devarajan, R., Ezzati, M., Friel, S., Goenka, S., Hammond, R. A., Hastings, G., Hawkes, C., Herrero, M., Hovmand, P. S., Howden, M., … Dietz, W. H. (2019). The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. In The Lancet (Vol. 393, Issue 10173, pp. 791–846). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(18)32822-8

Tafadzwa, M. J., Zvamaziva, J. T., Charles, M., Amiel, M., Pepukai, M., & Shepherd, M. (2021). Proximate, physico-chemical, functional and sensory properties OF quinoa and amaranth flour AS potential binders in beef sausages. Food Chemistry, 365. https://doi.org/10.1016/j.foodchem.2021.130619

Tavares, P. P. L. G., Silva, M. R., Santos, L. F. P., Nunes, I. L., & Magalhães-Guedes, K. T. (2018). Produção de bebida fermentada kefir de quinoa (Chenopodium quinoa) saborizada com cacau (Theobroma cacao) em pó. Revista Brasileirade Ciencias Agrarias, 13(4). https://doi.org/10.5039/agraria.v13i4a5593

Teixeira, H., Ciola, C. A., Nespeca, L. D. S., da Silva, T. B. V., Bona, E., Marques, L. L. M., Droval, A. A., Reitz Cardoso, F. A., & Fuchs, R. H. B. (2020). Impact of the Replacement of Wheat Flour by Oat, Amaranth, and Quinoa Flours in Tilapia Balls. Journal of Aquatic Food Product Technology, 29(9), 850–864. https://doi.org/10.1080/10498850.2020.1813859

Therdthai, N. (2022). Sugar, salt and fat reduction of bakery products. In Advances in Food and Nutrition Research (Vol. 99). https://doi.org/10.1016/bs.afnr.2021.11.004

United Nations. (2019). Global Population Growth and Sustainable Development. www.unpopulation.org.

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Verma, A. K., Rajkumar, V., & Kumar, S. (2019). Effect of amaranth and quinoa seed flour on rheological and physicochemical properties of goat meat nuggets. Journal of Food Science and Technology, 56(11), 5027–5035. https://doi.org/10.1007/s13197-019-03975-4

Vidaurre-Ruiz, J., Bender, D., & Schönlechner, R. (2023). Exploiting pseudocereals as novel high protein grains. Journal of Cereal Science, 114, 103795. https://doi.org/10.1016/j.jcs.2023.103795

Vieira, T. D. S., Freitas, F. V., Silva, L. A. A., Barbosa, W. M., & Da Silva, E. M. M. (2015). Efeito da substituição da farinha de trigo no desenvolvimento de biscoitos sem glúten. Brazilian Journal of Food Technology, 18(4), 285–292. https://doi.org/10.1590/1981-6723.1815

Villanueva, N. D. M., & Da Silva, M. A. A. P. (2009). Comparative performance of the nine-point hedonic, hybrid and self-adjusting scales in the generation of internal preference maps. Food Quality and Preference, 20(1), 1–12. https://doi.org/10.1016/j.foodqual.2008.06.003

Wolf, B. (2020). Chapter 18: Development of Healthy Food Structures: Reduction of Sugar, Salt, and Fat. In Food Chemistry, Function and Analysis (Vols. 2020-Janua, Issue 18). https://doi.org/10.1039/9781788016155-00439

Worch, T., Delarue, J., Rios De Souza, V., & Ennis, J. (2023). Data Science for sensory and consumer scientists.

Yazdi, E. A., Pedramnia, A., Naghipour, F., Elhamirad, A. H., & Asl, S. M. R. (2023). Investigation of the effect quinoa malt addition on the shelf life and structure of gluten-free bread. Journal of Food Science and Technology (Iran), 19(131), 161–172. https://doi.org/10.22034/FSCT.19.131.161

Downloads

Published

2024-04-23

How to Cite

Eduardo, K. ., Bedoya-Perales, N. ., Escobedo-Pacheco, E. ., & Saldaña, E. . (2024). Sensory and consumer science as a valuable tool to the development of quinoa-based food products: More than three decades of scientific evidence. Scientia Agropecuaria, 15(2), 251-267. https://doi.org/10.17268/sci.agropecu.2024.019

Issue

Section

Original Articles

Most read articles by the same author(s)