A citrus essential oil causes higher disturbance on the growth kinetics of Enterococcus faecalis than Lactobacillus rhamnosus

Autores/as

  • Carmen M. S. Ambrosio Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo.
  • Alberto C. Miano Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo.
  • Erick Saldaña Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación calle Ancash s/n, Moquegua.
  • Eduardo M. Da Gloria Department of Biological Science, Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo.

DOI:

https://doi.org/10.17268/sci.agropecu.2022.034

Palabras clave:

essential oils, poultry gut, beneficial bacteria, pathogenic bacteria

Resumen

Essential oils (EOs) have turned a promising alternative to using antibiotics in poultry production due to their antimicrobial properties. EOs could effectively combat pathogenic bacteria affecting poultry. Particularly, Citrus EOs, a by-product of citrus processing industries, could be a feasible alternative to this end due to their vast availability in the global market. Enterococci are associated with intestinal and extra-intestinal infections in poultry, which can increase poultry mortality. On the other hand, Lactobacilli are beneficial bacteria inhabiting the poultry gut and have health-promoting effects. The aim of this study was to evaluate the antibacterial activity of a commercial citrus EO, Orange oil phase essence (OOPE), on Enterococcus faecalis and Lactobacillus rhamnosus as well as to determine OOPE chemical composition. Results showed that OOPE inhibited E. faecalis and L. rhamnosus at 14.8 mg/mL. However, the evaluation of OOPE effects on the growth kinetics parameters of both bacteria reveled that OOPE caused higher disturbances on the growth kinetics of E. faecalis than L. rhamnosus. OOPE significantly reduced the maximal culture density (A) and growth rate (µmax) and extended the lag phase duration (λ) of E. faecalis in a dose-dependent manner, while OOPE slightly extended λ and affected µmax of L. rhamnosus. OOPE at 3.70 mg/mL reduced A and µmax in ~87.34 and 90.2%, respectively, while increased λ 3.8 times of E. faecalis. OOPE at this concentration reduced µmax in 11.8% and extended λ 1.38 times of L. rhamnosus. Therefore, OOPE had a selective antibacterial activity, presenting higher activity on E. faecalis. Despite, limonene was identified as the major compound (87.22%) of OOPE, minor compounds such as trans-carveol could be involved in conferring the selective antibacterial activity of OOPE.

Citas

Adams, R. P. (2007). Identification of essential oils by gas chromatography/mass spectrometry. Allured Publishing Corporation.

Agyare, C., Etsiapa Boamah, V., Ngofi Zumbi, C., & Boateng Osei, F. (2018). Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. Antimicrobial Resistance - A Global Threat. https://doi.org/10.5772/INTECHOPEN.79371

Ambrosio, C. M. S., Contreras‐Castillo, C. J., & Da Gloria, E. M. (2020). In vitro mechanism of antibacterial action of a citrus essential oil on an enterotoxigenic Escherichia coli and Lactobacillus rhamnosus. Journal of Applied Microbiology, 129(3), 541-553.

Ambrosio, C. M. S., de Alencar, S. M., de Sousa, R. L. M., Moreno, A. M., & Da Gloria, E. M. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products, 97, 128-136.

Ambrosio, C. M. S., de Alencar, S. M., Moreno, A. M., & Da Gloria, E. M. (2018). Evaluation of the selective antibacterial activity of Eucalyptus globulus and Pimenta pseudocaryophyllus essential oils individually and in combination on Enterococcus faecalis and Lactobacillus rhamnosus. Canadian Journal of Microbiology, 64(11), 844-855.

Ambrosio, C. M. S., Diaz-Arenas, G. L., Agudelo, L. P. A., Stashenko, E., Contreras-Castillo, C. J., & da Gloria, E. M. (2021). Chemical Composition and Antibacterial and Antioxidant Activity of a Citrus Essential Oil and Its Fractions. Molecules, 26(10), 2888.

Ambrosio, C. M. S., Ikeda, N. Y., Miano, A. C., Saldaña, E., et al. (2019). Unraveling the selective antibacterial activity and chemical composition of citrus essential oils. Scientific Reports, 9(1), 17719.

Barbieri, C., & Borsotto, P. (2018). Essential Oils: Market and Legislation. In Potential of Essential Oils. InTech. https://doi.org/10.5772/intechopen.77725

Brüssow, H. (2017). Adjuncts and alternatives in the time of antibiotic resistance and in-feed antibiotic bans. Microbial Biotechnology, 10, 674-677.

Chantziaras, I., Boyen, F., Callens, B., & Dewulf, J. (2014). Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. Journal of Antimicrobial Chemotherapy, 69(3), 827-834.

CLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Ninth Edition. In Clinical and Laboratory Standards Institute M07-A9, Wayne, PA. (Vol. 32).

Di Vito, M., Cacaci, M., Barbanti, L., Martini, C., Sanguinetti, M., et al. (2020). Origanum vulgare Essential Oil vs. a Commercial Mixture of Essential Oils: In Vitro Effectiveness on Salmonella spp. from Poultry and Swine Intensive Livestock. Antibiotics, 9(11), 763.

Diaz-Sanchez, S., D’Souza, D., Biswas, D., & Hanning, I. (2015). Botanical alternatives to antibiotics for use in organic poultry production. Poultry Science, 94(6), 1419-1430.

Diaz, J. M., Redondo, L. M., Redondo, E. A., Dominguez, J. E., Chacana, A. P., & Fernandez Miyakawa, M. E. (2016). Use of plant extracts as an effective manner to control clostridium perfringens induced necrotic enteritis in poultry. BioMed Research International, 3278359.

Ebani, V. V., Najar, B., Bertelloni, F., Pistelli, L., Mancianti, F., & Nardoni, S. (2018). Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry. Veterinary Sciences, 5(3), 62.

Ebani, V. V., Nardoni, S., Bertelloni, F., Tosi, G., Massi, P., Pistelli, L., & Mancianti, F. (2019). In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry. Molecules, 24(5), 900.

Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., & Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22(6), 896-902.

(2003). Regulation No. 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off J Eur Union, 268, 29-43.

Fancello, F., Petretto, G. L., Zara, S., Sanna, M. L., Addis, R., et al. (2016). Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT - Food Science and Technology, 69, 579-585.

Fertner, M. E., Olsen, R. H., Bisgaard, M., & Christensen, H. (2011). Transmission and genetic diversity of Enterococcus faecalis among layer poultrys during hatch. Acta Veterinaria Scandinavica, 53(1), 56.

Fisher, K., & Phillips, C. A. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology, 101(6), 1232-1240.

Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science and Technology, 19(3), 156-164.

Food Safety Commission of Japan. (2017). Antimicrobial-resistant Bacteria Arising from the Use of Colistin Sulfate in the Livestock (Antimicrobial-resistant Bacteria). Food Safety, 5(1), 24-28.

Friedly, E. C., Crandall, P. G., Ricke, S. C., Roman, M., O’Bryan, C., & Chalova, V. I. (2009). In vitro antilisterial effects of citrus oil fractions in combination with organic acids. Journal of Food Science, 74(2), 67-72.

Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. (2017). Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 25, 851-873.

Guardabassi, L., & Kruse, H. (2009). Principles of Prudent and Rational Use of Antimicrobials in Animals. In Guide to Antimicrobial Use in Animals (pp. 1-12).

Hayouni, E. A., Bouix, M., Abedrabba, M., Leveau, J.-Y., & Hamdi, M. (2008). Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chemistry, 111(3), 707-718.

Iwabuchi, H., Yukawa, C., Shimada, M., Kashiwagi, T., & Sawamura, M. (2010). Industrial View. In Citrus Essential Oils: Flavor and fragance (pp. 343-380). Hoboken, NJ, USA: John Wiley & Sons, Inc.

Jeni, R. El, Dittoe, D. K., Olson, E. G., Lourenco, J., Corcionivoschi, N., Ricke, S. C., & Callaway, T. R. (2021). Probiotics and potential applications for alternative poultry production systems. Poultry Science, 100(7), 101156.

Johnson, R. (2010). Potential Trade Implications of Restrictions on Antimicrobial Use in Animal Production-CRS Report. Retrieved from www.crs.gov

Jørgensen, S. L., Poulsen, L. L., Thorndal, L., Ronaghinia, A. A., Bisgaard, M., & Christensen, H. (2017). Characterization of Enterococcus faecalis isolated from the cloaca of ‘fancy breeds’ and confined poultrys. Journal of Applied Microbiology, 122(5), 1149-1158.

Liu, Y., & Liu, J.-H. (2018). Monitoring Colistin Resistance in Food Animals, An Urgent Threat. Expert Review of Anti-Infective Therapy, 16(6), 443-446.

Ma, F., Xu, S., Tang, Z., Li, Z., & Zhang, L. (2021). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 3(1), 32-38.

Menkem, Z. E., Ngangom, B. L., Tamunjoh, S. S. A., & Boyom, F. F. (2019). Antibiotic residues in food animals: Public health concern. Acta Ecologica Sinica, 39(5), 411-415.

Mitsch, P., Zitterl-Eglseer, K., Köhler, B., Gabler, C., Losa, R., & Zimpernik, I. (2004). The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler poultrys. Poultry Science, 83(4), 669-675.

Nielsen, C. K., Kjems, J., Mygind, T., Snabe, T., & Meyer, R. L. (2016). Effects of tween 80 on growth and biofilm formation in laboratory media. Frontiers in Microbiology, 7, 1878.

Nieuwlaat, R., Mbuagbaw, L., Mertz, D., Burrows, L. L., Bowdish, D. M. E., et al. (2020). Coronavirus Disease 2019 and antimicro-bial resistance: Parallel and Interacting Health Emergencies. Clinical Infectious Diseases, 72(9), 1657-1659.

O’Bryan, C. A., Crandall, P. G., Chalova, V. I., & Ricke, S. C. (2008). Orange essential oils antimicrobial activities against Salmonella spp. Journal of Food Science, 73(6), 264-267.

Olsen, R. H., Schønheyder, H. C., Christensen, H., & Bisgaard, M. (2012). Enterococcus faecalis of Human and Poultry Origin Share Virulence Genes Supporting the Zoonotic Potential of E. faecalis. Zoonoses and Public Health, 59(4), 256-263.

Ouwehand, A. C., Tiihonen, K., Kettunen, H., Peuranen, S., Schulze, H., & Rautonen, N. (2010). In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Veterinarni Medicina, 55(2), 71-78.

Rawson, T. M., Moore, L. S. P., Castro-Sanchez, E., Charani, E., Davies, F., et al. (2020). COVID-19 and the potential long-term impact on antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 75(7), 1681-1684.

Seyedtaghiya, M. H., Fasaei, B. N., & Peighambari, S. M. (2021). Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iranian Journal of Microbiology, 13(1), 74.

Teillant, A., Brower, C. H., & Laxminarayan, R. (2015). Economics of Antibiotic Growth Promoters in Livestock. Annual Review of Resource Economics, 7(1), 349-374.

United Nations. (2021). UN Comtrade: International Trade Statistics. https://comtrade.un.org/data/

Vanderhaeghen, W., & Dewulf, J. (2017). Antimicrobial use and resistance in animals and human beings. The Lancet Planetary Health, 1(8), e307-e308.

Walsh, T. R., & Wu, Y. (2016). China bans colistin as a feed additive for animals. The Lancet Infectious Diseases, 16, 1102-1103.

Yi, F., Jin, R., Sun, J., Ma, B., & Bao, X. (2018). Evaluation of mechanical-pressed essential oil from Nanfeng mandarin (Citrus reticulata Blanco cv. Kinokuni) as a food preservative based on antimicrobial and antioxidant activities. LWT, 95, 346-353.

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., Van ’ A. K., & Riet, T. (1990). Modeling of the Bacterial Growth Curve. Applied And Environmental Microbiology, 1875-1881.

Descargas

Publicado

2022-12-15

Cómo citar

Ambrosio, C. M. S. ., Miano, A. C. ., Saldaña, E. ., & Da Gloria, E. M. . (2022). A citrus essential oil causes higher disturbance on the growth kinetics of Enterococcus faecalis than Lactobacillus rhamnosus. Scientia Agropecuaria, 13(4), 369-379. https://doi.org/10.17268/sci.agropecu.2022.034

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a