Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
DOI:
https://doi.org/10.17268/sci.agropecu.2013.03.06Keywords:
Gompertz model, logistic model, Spirulina, lighting on solid state-LEDAbstract
The Gompertz and logistic mathematical models in the Spirulina sp. growth kinetics were evaluated and were compared with a modeling through Backpropagation Artificial Neural Networks (BP- ANN). Spirulina was cultivated in a (3 L/min) of 500 mL aerated laboratory photobioreactor with 40W fluorescent lighting and 1W lighting Solid State (LED-Light Emitting Diode) obtaining 11.0 klx lighting with both systems. The LED lighting allowed to obtain a (ɑ) 0.90 high biomass value compared with that one obtained with fluorescent lighting of 0.82, as well as a greater growth rate μ=0.63 h-1 preceded by a shorter latency time λ = 0.34 h. The BP-ANN showed a good accuracy with respect to the Gompertz I corrected model for both the Spirulina sp cultivation case with fluorescent lighting and with LED displaying correlation coefficients (R) of the 0.993 and 0.994 order respectively, with regard to the experimental data. Spirulina modeling through the Gompertz I corrected model is advantageous because besides showing R 0.987 and 0.990 values in Spirulina sp. cultures with fluorescent lighting and with LED respectively, it allows to attain the growth parameters kinetics directly.References
Cárdenas, F.; Giannuzzi, L.; Noia, M.; Zaritzky, N. 2001. El modelado matemático: una herramienta útil para la industria alimenticia. Ciencia Veterinaria. Facultad de Ciencias Veterinarias. UNLPam. Disponible en: http://www.biblioteca.unlpam.edu.ar/pubpdf/revet/n03a04coll.pdf [accesado: 26.03.2012].
Castro, G.; Valbuena, E.; Sánchez, E,; Briñez, W.; Vera, H.; Leal, M. 2008. Comparación de modelos sigmoidales aplicados al crecimiento de Lactococcus lactis subsp. lactis. Revista Científica. FCV- LUZ. XVIII (5): 582-588.
Contreras C.; Peña, J. M.; Flores, L.B.; Cañizares, R.O. 2003.Avances en el Diseño Conceptual de Fotobiorreactores para el Cultivo de Microalgas. Interciencia Revista de Ciencia y Tecnología de América. Caracas, Venezuela. 28 (8): 450-456.
Chojnacka, K.; Wojciechowski, P.M. 2007. Bioaccumulation of Cr (III) ions by Blue Green-alga Spirulina sp. Part II. Mathematical Modeling. American Journal of Agricultural and Biological Sciences 2(4): 291-298.
Ferreira, L. 2009. Modelagem de crescimento celular e consumo de dioxido de carbono por cianobacterias cultivadas em fotobiorreatores. UNICAMP: Programa de Pós-Graduação em Engenharia Química. Disponible en: http://www.bibliotecadigital. unicamp.br/ document/?code=000471037 [accesado: 27.03.2012].
Gimeno, R.; Cosano, G. 2004. Modelización predictiva del desarrollo bacteriano en los alimentos. Anales. Real Academia de Ciencias Veterinarias de Andalucía Oriental 17 (1): 61-78.
Gómez, L. 2007. Microalgas: aspectos ecológicos y biotecnologícos. Revista Cubana de Química. XIX (2).
Jourdan, J-P. 2000. Cultivo artesanal de Spirulina. Disponible en: xarxaespirulina.files.wordpress.com/2010/08/cultive_es.pdf [accesado: 26.03.2012].
Machado, R. 2011. Modelagem da produção de biomassa da Haematococcus pluvialis. Escola Politécnica. PEI. Universidades Federal da bahía. Disponible en: http://www.pei.ufba.br/novo/uploads/biblioteca/DissertacaoRosanaGalvao.pdf [accesado: 26.03.2012].
Martín, E.; Soriano J.; Escobar, T. 2007. Uso de LED en iluminación. Facultad de Ofimática – Universidad Politécnica de Madrid. Disponible en: http://www.led21.es/docs/EL%20USO%20DE%20LOS%20LEDS.pdf [accesado: 24.03.2012].
Martínez, A. 2005. Modelos de Regresión Basados en Redes Neuronales de Unidades Producto Diseñadas y Entrenadas Mediante Algoritmos de Optimización Híbrida. Aplicaciones. Tesis Doctoral. Departamento de Ciencias de la Computación e Inteligencia Artificial. Universidad de Granada. España. Disponible en: http://hera.ugr.es/tesisugr/15383246.pdf [accesado: 24.03.2012].
Öncel, S.S.; Akpolack, O. 2006. An integrated photobioreactor system for the production of Spirulina platensis. Biotechnology 5 (3): 365-372.
ORIGENLIGHT. 2012. Comparación del rendimiento LED vs fluorescente. 2012. Disponible en: http://www.origenlight.com.ec/Comparaci%C3%B3n%20LED%20vs%20Flourescente.pdf [accesado: 24.03.2012].
Pandey, J.P.; Tiwari, A. 2010. Optimization of Biomass Production of Spirulina maxima. J. Algal Biomass Utln 1 (2): 20-32
Ramírez, L.; Olvera, R. 2006. Uso tradicional y actual de Spirulina sp. (Arthrospira sp.) Interciencia Revista de Ciencia y Tecnología de América. Caracas, Venezuela. 31 (9): 657-663.
Rodríguez, A.R.; Triana, F.C. 2006. Evaluación del pH en el cultivo de Spirulina spp. (=Arthrospira) bajo condiciones de laboratorio. Trabajo de Grado de Microbiología Industrial. Pontificia Universidad Javeriana – Bogotá. 2006.
Rodríguez, M. 2003. Desarrollo y Validación de modelos matemáticos para la predicción de vida comercial de productos cárnicos. Tesis Doctoral. Departamento de Bromatología y Tecnología de Alimentos. Universidad de Córdova. Disponible en: http://helvia.uco.es/xmlui/bitstream/handle/10396/218/13207957.pdf?sequence=1 [accesado: 24.03.2012].
Silva, J.; Vásquez, V. 2011. Producción de biomasa de Tetraselmis suecica empleando agua de mar con sanguaza. Scientia Agropecuaria (2): 13-23.
Singh, S.G.; Sofi, M.Y.; Masih, S. 2010. Potential of Different Light Intensities on the Productivity of Spirulina platensis under Agra Conditions. Research Journal of Agricultural Sciences 1(4): 468-469.
Received: 12/08/13
Accepted: 20/09/13
Corresponding author: E-mail: vvasquezv@upao.edu.pe (V. Vásquez-Villalobos)
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).