Identification of pigmented-fleshed potato clones of high marketable yield and better frying quality: Stability and multivariate analysis of genotype-environment interaction

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2020.03.04

Keywords:

environment, clone, pigmented-fleshed, multivariate analysis, variance.

Abstract

In the present research, nineteen advanced potato clones with pigmented-fleshed were analyzed in two potato-producing localities in Cajamarca, Peru, during two agricultural seasons, by means of the combined analysis of variance, the model of additive main effects and multiplicative interaction (AMMI) and the Biplot analysis, to analyze the genotype-environment interaction (GEI), in order to select clones with high stability of marketable yield and quality. Multivariate analysis showed differences for the main effects of genotypes, environments and GEI. Which states that the genetic makeup of each clone and the environment influenced the marketable yield and frying color due to the polygenic character that governs these characteristics. The results identified the CIP clone 302299.28 with red and cream fleshed and red skin with low IGA, which indicates that it is a stable clone with high commercial yield with 31.8 t ha-1 and a scale of 2 in the frying color, obtaining a better response to environmental variation. Followed by CIP clone 302281.17 with fleshed and yellow skin, which showed commercial yield stability with 32 t ha-1 and 2.2 of frying color. Likewise, CIP clone 302280.23 of fleshed and violet skin reported a marketable yield of 33.0 t ha-1, and 1.7 on the frying color scale, obtaining quality stability, being a clone for the processing industry in strips, flakes and other derivatives. Therefore, these clones are selected for wide production in Cajamarca.

References

Agahi, K.; Ahmadi, J.; Oghan, H.A.; et al. 2020. Analysis of genotype × environment interaction for seed yield in spring oilseed rape using the AMMI model. Crop Breed. Appl. Biotechnol. 20(1): e26502012.

Almohammedi, O.H.; AL-Abdaly, M.M.; Mahmod, S.A; 2019. Study of genotype and environment interaction on yield analysis of tuber of potato (Solanum tuberosum L.) using AMMI in Iraq. Plant Arch 19(1): 978-982.

Ajay, B.C.; Bera, S.K.; Singh, A.L.; et al. 2020. Evaluation of Genotype × Environment Interaction and Yield Stability Analysis in Peanut Under Phosphorus Stress Condition Using Stability Parameters of AMMI Model. Agricultural Research (In press).

Bassa, D.; Gurmu, F.; Mohammed, H. 2019. Comparison of Univariate and Multivariate Models to Analyze Stability of Common Bean (Phaseolus vulgaris L.) Genotypes in Ethiopia. Agrotechnology 8: 188-199.

Brown, C.R. 2005. Antioxidants in potato. American Journal of Potato Research 82(2):163-172.

Dos Santos, A.; Rodrigues, E.; Pantaleao, A.; et al. 2019. Nonlinear Regression and Multivariate Analysis Used to Study the Phenotypic Stability of Cowpea Genotypes. Hortscience 54(10): 1682-1685.

Elfnesh, F.; Tekaling, T.; Solomon, W. 2011. Processing quality of improved potato (Solanum tuberosum L.) cultivars as influenced by growing environment and blanching. African Journal of Food Science 5: 324-332.

Esuma, W.; Sezi, K.R.; Herselman, L.; et al. 2016. Stability and genotype by environment interaction of provitamin a carotenoid and dry matter content in cassava in Uganda. Breeding Science 66(3): 434-443.

Eichhorn, S.; Winterhalter, P. 2005. Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Research International 38 (8-9): 943-948.

Gedif, M.; Yigzaw, D. 2014. Genotype by Environment Interaction Analysis for Tuber Yield of Potato (Solanum tuberosum L.) Using a GGE Biplot Method in Amhara Region, Ethiopia. Agr. Sci. 5: 239-249.

Goksoy, A.; Sincik, M.; Erdogmus, M.; et al. 2019. The parametric and non-parametric stability analyses for interpreting genotype by environment interaction of some soybean genotypes. Turkish Journal of Field Crops 24(1): 28-38.

Halford, N.G.; Muttucumaru, N.; Powers, S.J.; et al. 2012. Concentrations of Free Amino Acids and Sugars in Nine Potato Varieties: Effects of Storage and Relationship with Acrylamide Formation. J. Agric. Food Chem. 60: 12044-12055.

Khalil, A.; Ur-Rahman, H.; Ur-Rehman, N.; et al. 2011. Evaluation of maize hybrids for grain yield stability in North-West of Pakistan. Sarhad J. Agric 27(2): 213-218.

Lara, R.T.; Malaver, R.H.T. 2019. Quality attributes for processing potato clones of purple-fleshed in Peru. Rev. Ciênc. Agrov. 18(4): 444-452.

Lemma, T.; Mohammed, W.; Tesfaye, A. 2020. Evaluation of Potato (Solanum tuberosum L.) Varieties for Yield and Some Agronomic Traits. Open Agriculture. 5: 63-74.

Maharana, J.; Panda, C.M.; Jakhar, P. 2017. Genotype × Environment Interaction and Stability Analysis of Kharif Potato in Koraput Region of Odisha. Int. J. Curr. Microbiol. App. Sci 6(5): 1159-1166.

Miranda, G.V.; Souza, L.V.; Guimarães, L.J.M.; et al. (2009). Multivariate analyses of genotype x environment interaction of popcorn. Pesq. agropec. Bras. 44(1): 45-50.

Ngailo, S.; Shimelis, H.; Sibiya, J.; et al. 2019. Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon 5(3): e01448.

Pazderů, K.; Hamouz, K.; Lachman, J.; et al. 2015. Yield potential and antioxidant activity of potatoes with coloured flesh. Plant Soil Environ 61(9): 917-421.

Pedreschi, F.; Domingo, M.; Manrique, T. 2016. Quality Evaluation and Control of Potato Chips. In: Sun, D. (Comp.). Computer Vision Technology for Food Quality Evaluation. USA. Pp. 591-613.

SAS, 2003. The SAS system for Windows. Release 9.1.3. p. 83-122. SAS Institute, Cary, North Carolina, USA.

Shahriari, Z.; Heidari, B.; Dadkhodaie, A. 2018. Dissection of genotype × environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses. PLoS ONE 13: e0196095.

Sharifi, P.; Aminpanah, H.; Erfani, R.; et al. 2017. Evaluation of Genotype × Environment Interaction in Rice Based on AMMI Model in Iran. Rice Science 24(3): 173-180.

Silveira, D.; Kist, V.; De Paula, T.; et al. 2013. AMMI analysis to evaluate the adaptability and phenotypic stability of sugarcane genotypes. Scientia Agricola 70(1): 27-32.

Tena, E.; Goshu, F.; Mohamad, H.; et al. 2019. Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia. Cogent Food & Agriculture 5: 1651925.

Tirado-Lara, R.; Tirado-Malaver, R.H. 2018. Comportamiento de parámetros biométricos de clones para la obtención de papa baby con pulpa pigmentada. Sci. Agrop. 9(3): 401-410.

Tirado, R.H.; Mendoza, W.; Tirado, R. 2018. Interacción genotipo × ambiente en rendimiento de papa (Solanum tuberosum L.) con pulpa pigmentada en Cutervo, Perú. Chilean J. Agric. Anim. Sci., ex Agro-Ciencia 34(3): 191-198.

Tran, M.T.; Chen, X.D.; Southern, C. 2007. Reducing oil content of fried potato crisps considerably using a ‘sweet’ pre-treatment technique. J. Food Eng. 80(2):719-726

Vargas, H.M.; J.C. Crossa. 2000. El análisis AMMI y la gráfica del biplot en SAS. Unidad de Biometría y Estadística. CIMMYT, México. 42 pp

Vásquez A.V.; Cabrera, H. A.; Jiménez, D.L.; et al. 2019. Estabilidad del rendimiento de genotipos de papa (Solanum tuberosum L.). Ecología Aplicada 18(1) 59-65.

Xavier, A.; Jarquin, D.; Howard, R.; et al. 2018. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population. G3 Gene Gen. Genet. 8: 519-529.

Xu, N.; Fok, F.M.; Zhang, G.; et al. 2014. The Application of GGE Biplot Analysis for Evaluat ng Test Locations and Mega-Environment Investigation of Cotton Regional Trials. Journal of Integrative Agriculture 13(9): 1921-1933.

Published

2020-08-26

How to Cite

Tirado-Lara, R., Tirado-Malaver, R., Mayta-Huatuco, E., & Amoros-Briones, W. (2020). Identification of pigmented-fleshed potato clones of high marketable yield and better frying quality: Stability and multivariate analysis of genotype-environment interaction. Scientia Agropecuaria, 11(3), 323-334. https://doi.org/10.17268/sci.agropecu.2020.03.04

Issue

Section

Original Articles