Effect of technological process on antioxidant capacity and total phenolic content of Andean lupine (Lupinus mutabilis Sweet)

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2020.02.02

Keywords:

antioxidant capacity, total phenols, L. mutabilis, Andean lupine, tarwi.

Abstract

The effect of debittering, extrusion and spray drying on antioxidant capacity and total phenolic compounds in non-defatted and defatted flours from three Andean lupine genotypes (Altagracia, Andenes, and Yunguyo) was evaluated. Total phenolic content (TPC; Folin-Ciocalteu method) and antioxidant capacity (DPPH and ABTS+) were assessed by spectrophotometry. Results showed that technological processes decreased significantly (p ≤ 0.05) antioxidants and phenolic compounds. Bitter lupine (control sample) had higher (p ≤ 0.05) TPC and antioxidant capacity than processed samples. In non-defatted and defatted samples, TPC of processed samples varied between 0.64 - 1.10 and 0.75 - 1.33 mg gallic acid equivalent/g d.m. in non-defatted and defatted samples, respectively. The DPPH antioxidant capacity varied between 2.87 - 4.10 and 3.12 - 4.73 μmol Trolox/g d.m., while the ABTS+ antioxidant capacity ranged between 50.65 - 75.56 and 61.63 - 76.88 μmol Trolox/g d.m. in non-defatted and defatted samples, respectively. On the other hand, lipids negatively influenced the quantification of TPC; therefore, the defatted samples had higher TPC.

References

Anton, A.A.; Fulcher, G.R.; Arntfield, S.D. 2009. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry 113(4): 989-996.

A.O.A.C. 1990. Official Methods of Analysis. Association of Official Agricultural Chemists (15th ed.). Washington, D.C. U.S.A. 136-138 pp.

Arnoldi, A.; Boschin, G.; Zanoni, C.; et al. 2015. The health benefits of sweet lupin seed flours and isolated proteins. Journal of Functional Foods 18: 550-563.

Berghout, J.A.M.; Boom, R.M.; Van der Goot, A.J. 2015. Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocolloids 43: 465-472.

Boostani, S.; Aminlari, M.; Moosavi-nasab, M.; et al. 2017. Fabrication and characterisation of soy protein isolate-grafted dextran biopolymer: A novel ingredient in spray-dried soy beverage formulation. International Journal of Biological Macromolecules 102: 297-307.

Brennan, C.; Brennan, M.; Derbyshire, E.; et al. 2011. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science and Technology 22(10): 570-575.

Cano, A.; Arnao, M.B. 2004. Actividad antioxidante hidrofílica y lipofílica y contenido en vitamina C de zumos de naranja comerciales: relación con sus características organolépticas. Ciencia y Tecnología Alimentaria 4(3): 185-189.

Castro, M.R.; Hernández, J.A.; Marcilla, Sh.; et al. 2016. Efecto del contenido de grasa en la concentración de polifenoles y capacidad antioxidante de Teobroma cacao L. "cacao". Ciencia e Investigación 19(1): 19-23.

Córdova-Ramos, J. S.; Glorio-Paulet, P.; Camarena, F.; Brandolini, A.; Hidalgo, A. 2020. Andean lupin (Lupinus mutabilis Sweet): processing effects on chemical composition, heat damage and in vitro protein digestibility. Cereal Chemistry (In press).

Czubinski, J.; Wroblewska, K.; Czyzniejewski, M.; et al. 2019. Bioaccessibility of defatted lupin seed phenolic compounds in a standardized static in vitro digestion system. Food Research International 116: 1126-1134.

Dueñas, M.; Hernández, T.; Estrella, I.; et al. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chemistry 117(4): 599-607.

Erbas, M. 2010. The effects of different debittering methods on the production of lupin bean snack from bitter Lupinus albus L. seeds. Journal of Food Quality 33(6): 742-757.

Ertaş, N.; Bilgiçli, N. 2012. Effect of different debittering processes on mineral and phytic acid content of lupin (Lupinus albus L.) seeds. Journal of Food Science and Technology 51(11): 3348-3354.

Gross, R.; von Baer, E.; Koch, F.; et al. 1988. Chemical composition of a new variety of the Andean lupin (Lupinus mutabilis cv. Inti) with low-alkaloid content. Journal of Food Composition and Analysis 1(4): 353-361.

Guerreo-Ochoa, M.R.; Pedreschi, R.; Chirinos, R. 2015. Optimised methodology for the extraction of protein from quinoa (Chenopodium quinoa Willd.). International Journal of Food Science and Technology 50(8): 1815-1822.

Hickisch, A.; Beer, R.; Vogel, R.F.; et al. 2016. Influence of lupin-based milk alternative heat treatment and exopolysaccharide-producing lactic acid bacteria on the physical characteristics of lupin-based yogurt alternatives. Food Research International 84: 180-188.

Jacobsen, S.; Mujica, A. 2006. El tarwi (Lupinus mutabilis Sweet.) y sus parientes silvestres. Revista botánica económica de los andes centrales 458-482.

Jiménez-Martínez, C.; Hernández-Sánchez, H.; Dávila-Ortiz, G. 2007. Diminution of quinolizidine alkaloids, oligosaccharides, and phenolic compounds from two species of lupinus and soybean seeds by the effect of Rhizopus oligosporus. Journal of the Science of Food and Agriculture 87(7): 1315-1322.

Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; et al. 2018. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT-Food Science and Technology 87: 225-233.

Karamać, M.; Orak, H.H.; Amarowicz, R.; et al. 2018. Phenolic contents and antioxidant capacities of wild and cultivated white lupin (Lupinus albus L.) seeds. Food Chemistry 258: 1-7.

Lammi, C.; Aiello, G.; Vistoli, G.; et al. 2016. A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. Journal of Functional Foods 24: 297-306.

Lampart-Szczapa, E.; Konieczny, P.; Nogala-Kałucka, M.; et al. 2006. Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chemistry 96(2): 290-296.

Lim, K.; Ma, M.; Dolan, K.D. 2011. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products. Journal of Food Science 76(7): 156-164

Liu, R.; Liu, R.; Shi, L.; et al. 2019. Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT-Food Science and Technology 109: 26-32.

Martínez-Villaluenga, C.; Zieliński, H.; Frias, J.; et al. 2009. Antioxidant capacity and polyphenolic content of high-protein lupin products. Food Chemistry 112(1): 84-88.

Mohammed, M.A.; Mohamed, E.A.; Yagoub, A.E.A.; et al. 2017. Effect of processing methods on alkaloids, phytate, phenolics, antioxidants activity and minerals of newly developed lupin (Lupinus albus L.) cultivar. Journal of Food Processing and Preservation 41(1): 1-9.

Oomah, B.D.; Tiger, N.; Olson, M.; et al. 2006. Phenolics and antioxidative activities in narrow-leafed lupins (Lupinus angustifolius L.). Plant Foods for Human Nutrition 61(2): 91-97.

Plank, D.W.; Szpylka, J.; Sapirstein, H.; et al. 2012. Determination of antioxidant activity in foods and beverages by reaction with 2,2′-Diphenyl-1-picrylhydrazyl (DPPH): Collaborative study first action 2012.04. Journal of AOAC International 95: 1562-1570.

Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. 2009. Isoflavones and antioxidant capacity of Peruvian and Brazilian lupin cultivars. Journal of Food Composition and Analysis 22(5): 397-404.

Ramos-Enríquez, J.R.; Ramírez-Wong, B.; Robles-Sánchez, R.M.; et al. 2018. Effect of extrusion conditions and the optimization of phenolic compound content and antioxidant activity of wheat bran using response surface methodology. Plant Foods for Human Nutrition 73: 228-234

Singh, A.; Idowu, A.T.; Benjakul, S.; et al. 2020. Debittering of salmon (Salmo salar) frame protein hydrolysate using 2-butanol in combination with β-cyclodextrin: Impact on some physicochemical characteristics and antioxidant activities. Food Chemistry 321: 126686.

Sun, L.C.; Sridhar, K.; Tsai, P.J.; et al. 2019. Effect of traditional thermal and high-pressure processing (HPP) methods on the color stability and antioxidant capacities of Djulis (Chenopodium formosanum Koidz.). LWT- Food Science and Technology 109: 342-349.

Thambiraj, S.R.; Phillips, M.; Koyyalamudi, S.R.; et al. 2018. Yellow lupin (Lupinus luteus L.) polysaccharides: Antioxidant, immunomodulatory and prebiotic activities and their structural characterisation. Food Chemistry 267: 319-328.

Tsaliki, E.; Lagouri, V.; Doxastakis, G. 1999. Evaluation of the antioxidant activity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus). Food Chemistry 65(1): 71-75.

Villarino, C.B.J.; Jayasena, V.; Coorey, R.; et al. 2015. Optimization of formulation and process of Australian sweet lupin (ASL)-wheat bread. LWT-Food Science and Technology 61(2): 359-367.

Vo, B.V.; Bui, D.P.; Nguyen, H.Q.; et al. 2015. Optimized fermented lupin (Lupinus angustifolius) inclusion in juvenile barramundi (Lates calcarifer) diets. Aquaculture 444: 62-69.

Wolkers–Rooijackers, J.C.M.; Endika, M.F.; Smid, E.J. 2018. Enhancing vitamin B12 in lupin tempeh by in situ fortification. LWT- Food Science and Technology 96: 513-518.

Yilmaz, V. A., Brandolini, A., Hidalgo, A. 2015. Phenolic acids and antioxidant activity of wild, feral and domesticated wheats. Journal of Cereal Science 64: 168-175.

Zarei, M.; Fazlara, A.; Tulabifard, N. 2019. Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon 5(6): e01894.

Zhang, J.; Zhang, Ch.; Chen, X.; et al. 2020. Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. Journal of Food Engineering 269: 109744.

Zhong, L.; Fang, Z.; Wahlqvist, M.L.; et al. 2019. Extrusion cooking increases soluble dietary fibre of lupin seed coat. LWT- Food Science and Technology 99: 547-554.

Published

2020-06-08

How to Cite

Córdova-Ramos, J. S., Glorio-Paulet, P., Hidalgo, A., & Camarena, F. (2020). Effect of technological process on antioxidant capacity and total phenolic content of Andean lupine (Lupinus mutabilis Sweet). Scientia Agropecuaria, 11(2), 157-165. https://doi.org/10.17268/sci.agropecu.2020.02.02

Issue

Section

Original Articles