Calidad de compost obtenido a partir de estiércol de gallina, con aplicación de microorganismos benéficos
DOI:
https://doi.org/10.17268/sci.agropecu.2019.03.05Keywords:
Consorcios microbianos, compostaje, industria avícola, estiércol.Abstract
El objetivo de esta investigación fue evaluar la calidad del compost obtenido a partir de estiércol de gallinas, con inoculación de microorganismos benéficos autóctonos. La investigación se realizó durante 13 semanas; a nivel de campo se extrajo consorcios microbianos beneficiosos CMB1de col (Brassica oleracea) y CMB2 de hierba luisa (Cymbopogon citratus) los cuales se inocularon una vez por semana al 5% de concentración en las pilas de compostaje distribuidas en bloque completos al azar con tres repeticiones, se estableció tres tratamientos T1 (CMB1), T2 (CMB2) y T3 (Testigo). Se determinó que los consorcios microbianos benéficos suprimen los malos olores en el proceso de compostaje, a la par aceleran la degradación de la materia orgánica lo cual se evidencia en el mayor contenido de ácidos húmicos en el compost final en comparación con el control: T1 = (3-4%), T2 = (3%), (T3) = 1%. En el compost obtenido con inoculación de CMB1 y CMB2 se determinó mayor actividad biológica: T1 = 3 ug/ml, T2 = 4 ug/ml, T3 = 1 ug/ml, además se identificaron microorganismos benéficos en mayor concentración (log UFC.g-1) así como más alto contenido de nutrientes con respecto al tratamiento testigo, por tanto, de calidad superior.
References
Al-Bataina, B.B.; Young, T.M.; Ranieri, E. 2016. Effects of compost age on the release of nutrients. International Soil and Water Conservation Research 4(3): 230-236.
Alvarez-Vera, M.; Vázquez, J.; Castillo, J.; Tucta, F.; Meza, V. 2018. Potencial de la flora de la provincia del Azuay (Ecuador) como fuente de microorganismos benéficos. Scientia Agrope-cuaria 9(4): 561-568.
Alvarez, M.; Tucta, F.; Quispe, E.; Meza, V. 2018. Incidencia de la inoculación de microorganismos benéficos en el cultivo de fresa (Fragaria sp.). Scientia Agropecuaria 9(1): 33-42.
Antunes, L.P.; Martins, L.F.; Pereira, R.V.; Thomas, A.M.; Barbosa, D.; Lemos, L.N.; Silva, G.M.M.; Moura, L.M.S.; Epamino, G.W.C.; Digiampietri, L.A.; Lombardi, K.C.; Ramos, P.L.; Quaggio, R.B.; De Oliveira, J.C.F.; Pascon, R.C.; Da Cruz, J.B.; Da Silva, A.M.; Setubal, J.C. 2016. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports 6: 1-13.
Aye, SL. 2016. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Jour. Myan. Acad. Arts & Sc. XIV (1): 317-331.
Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadr, B. 2010. Uses and management of poultry litter. World’s Poultry Science 66(4): 673-698.
Brandelli, A.; Sala, L.; Kalil, S.J. 2015. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International 73: 3-12.
Breitenbeck, G.A.; Schellinger, D. 2004. Calculating the reduction in material mass and volume during composting. Compost Science & Utilization 12(4): 365-371.
Chandna, P.; Nain, L.; Singh, S.; Kuhad, R.C. 2013. Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiology 13(99): 1-14.
Fan, Y Van.; Lee, C.T.; Klemes, J.J.; Chua, L.S.; Sarmidi, M.R.; Leow, CW. 2018. Evaluation of Effective Microorganisms on home scale organic waste composting. Journal of Environmental Management 216: 41-48.
Guo, X.; Liu, H.; Wu, S. 2019. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of the Total Environment 662: 501-510.
He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F.; Tang, S. 2013. Evolution of microbial community diversity and enzymatic activity during composting. Research in Micro-biologoy 164: 189-198.
Hernández-Cázares, A.S.; Real-Luna, N.; Del-gado-Blancas, M.I.; Bautista-Hernández, L.; Velasco-Velasco, J. 2016. Residuos agroindustriales con potencial de compostaje. Agroproductividad 9(8): 10-17.
Joshua, O.O. 2013. Solid waste management for sustainable development and public health: A case study of Lagos State in Nigeria. Universal Journal of Public Health 1(3): 33-39.
Jurado, M.; López, M.J.; Suárez-Estrella, F.; Vargas-García, M.C.; López-González, J.A.; Moreno, J. 2014. Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresource Technology 162: 283-293.
Karnchanawong, S.; Nissaikla, S. 2014. Effects of microbial inoculation on composting of household organic waste using passive aeration bin. International Journal of Recycling of Organic Waste in Agriculture 3(4): 113-119.
Khater, E.-S.G. 2015. Some physical and chemical properties of compost. International Journal of Waste Resources 5(1): 1-5.
Kopec, M.; Gondek, K.; Mierzwa-Hersztek, M.; Antonkiewicz, J. 2018. Factors influencing chemical quality of composted poultry waste. Saudi Journal of Biological Sciences 25: 1678-1686.
Kumar, B.L; Gopal, D.V.R.S. 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5(6): 867-876.
Liu, L.; Wang, S.; Guo, X.; Zhao, T.; Zhang, B. 2018. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Management 73: 101-112.
López-González, J.A; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; Jurado, M.M.; Moreno, J. 2015. Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality and biodiversity. Bioresource Technology 175: 406-416.
Mahawar, H.; Prasanna, R. 2018. Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture. Environmental Nanotechnology, Monitoring & Management 10: 477-485.
Mahmud, A.; Mehmood, S.; Hussain, J.; Ahmad, S. 2015. Composting of poultry dead birds and litter. World’s Poultry Science Journal 71(4): 621-629.
Marešová, K.; Kollárová, M. 2010. Influence of compost covers on the efficiency of biowaste composting process. Waste Management 30: 2469-2474.
Muscolo, A.; Papalia, T.; Settineri, G.; Mallamaci, C.; Jeske-Kaczanowska, A. 2018. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties. Journal of Cleaner Production 195: 93-101.
Nadia, O.F.; Xiang, L.Y.; Lie, L.Y.; Dzulkornain, C.A.; Mohammed, M.A.P.; Baharuddin, A.S. 2015. Investigation of physico-chemical properties and microbial community during poultry manure co-composting process. Journal of Environmental Sciences 28: 81-94.
Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. 2018. Composting: The way for a sustainable agriculture. Applied Soil Ecology 123: 744-750.
Ribeiro, N.D.Q.; Souza, T.P.; Costa, L.M.A.S.; De Castro, C.P.; Dias, E.S. 2017. Microbial additives in the composting process. Ciência e Agrotecnologia 41(2):159-168.
Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. 2017. Compost supplementation with nutrients and microorganisms in composting process. Waste Management 69: 136-153.
Sarkar, S.; Pal, S.; Chanda, S. 2016. Optimization of a vegetable waste composting process with a significant thermophilic phase. Procedia Environmental Sciences 35: 435-440.
Sharma, A.; Saha, T.N.; Arora, A.; Shah, R.; Nain, L. 2017. Efficient Microorganism compost benefits plant growth and improves soil health in calendula and marigold. Horticultural Plant Journal 3(2): 67-72.
Viaene, J.; Lancker, J. Van.; Vandecasteele, B.; Willekens, K.; Bijttebier, J.; Ruysschaert, G.; Neve, S. De; Reubens, B. 2016. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe. Waste Management 48: 181-192.
Villar, I.; Alves, D.; Garrido, J.; Mato, S. 2016. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Management 54: 83-92.
Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, H.; Wang, Y.; Chen, S. 2016. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environmental Sciences 31: 12-17.
Wang, J.; Song, Y; Ma, T.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.; Shen, Q. 2017. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology 112: 42-50.
Wang, X.; Cui, H.; Shi, J.; Zhao, X.; Zhao, Y.; Wei, Z. 2015. Bioresource technology relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresource Technology 198: 395-402.
Received March 7, 2019.
Accepted September 9, 2019.
Corresponding author: malvarezv@ucacue.edu.ec (M. Alvarez-Vera).
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).