Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller

Authors

  • Víctor Vásquez Universidad Nacional de Trujillo, Trujillo
  • Carlos Lescano Universidad Privada Antenor Orrego, Trujillo

DOI:

https://doi.org/10.17268/sci.agropecu.2010.01.06

Keywords:

Artificial Neural Networks (ANN), molasses vinegar, flash evaporator, flash distiller

Abstract

It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C) and in three times (25, 35 and 45 min). The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF) type with Backpropagation (BP) training algorithms and set of Levenberg-Marquardt (LM) weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation), 7 linear outputs (physicochemical characteristics), 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation), 7 linear outputs (physical and chemical characteristics), 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms.

References

Achaerandio, I.; Güell, C.; López, F. 2002a. Continuos Vinegar Decoloration with Exchange Resins. Journal of Food Engineering 51 (4): 311-317.

Achaerandio, I; Güell, C; Medina, F.; Lamuela-Raventos, R.; López, F. 2002b. Vinegar Decolourization by Re-Activated Carbon. Food Science & Technology International 8 (4): 239-242.

Al-Shayji, K. A.; Al-wadei, S.; Elkamel, A. 2005. Modeling and Optimization of multistage flash desalination process. Engineering optimization 37 (6): 591-607.

Brabec, M. J. 1981. Aldehydes and Acetals. Edit. Patty’s Industrial Hygiene and Toxicology. Vol. II A, Toxicology. New York. John Wiley & Sons, Inc.

Cruz, A. J. G.; Silva, A. S.; Araujo, M. L. G. C.; Giordano, R. C.; Hokka, O. 1999. Estimation of the Volumetric Oxygen Transfer Coefficient (KLa) from the Gas Balance and Using a Neural Network Technique. Braz. J. Chem. Eng. 16 (2): 179-183.

Demuth, H.; Beale, M. 2005. Neural Network Tollbox for Use with MATLAB. User’s Guide. Version 4. The Maths Works, Inc.

FAO, 2001. Informe de la 33ª Reunión del Comité del Codex Sobre Aditivos alimentarios y Contaminantes de los Alimentos. Disponible en: http://www.fao.org/docrep/meeting/005/y0474s/y0474s7i.htm

Fasset, D. 1983. Aldehydes and Esters. Edit. New York. 1959 – 1960.

García, M.; López-Mungia, A. 1993. Bebidas Alcohólicas no Destiladas. Biotecnología Alimentaria. Edit. Limusa Noriega Editores. México. Pp. 263 – 311.

Gerbi, V.; Zeppa, G.; Beltramo, R.; Carnacini, A.; Antonelli, A. 1998. Characterization of White Vinegars of Different Sources with Artificial Neural Networks. J Sci.Food Agric. Great Britain 78: 417-422.

Hussain, M. A.; Rhaman, M. S.; Ng, C. W. 2002. Prediction of Pores Formation (Porosity) in Foods During Drying: Generic Models by the Use of Hybrid Neural Network. Journal of Food Engineering 51: 239-248.

Ince, E.; Kirbaslar, S. 2002. Liquid-Liquid Equilibria of the Water-Acetic Acid-Butyl Acetate System. Braz. J. Chem. Eng. 19 (2): 243-254.

Isasi, P.: Galván, I. 2004. Redes Neuronales Artificiales. Un Enfoque Práctico. Edit. Pearson Prentice Hall. Madrid. España.

INDECOPI - Instituto Nacional de Defensa de la Competencia y de la Protección Intelectual. 1970. NTP 209.020. Vinagre. Lima - Perú.

INDECOPI - Instituto Nacional de Defensa de la Competencia y de la Protección Intelectual. 2003-a. NTP 210.020. Bebidas Alcohólicas. Determinación de Aldehídos Totales. Lima - Perú.

INDECOPI – Instituto Nacional de Defensa de la Competencia y de la Protección Intelectual. 2003-b. NTP 210.025. Bebidas Alcohólicas. Determinación de Furfural. Lima – Perú.

INDECOPI - Instituto Nacional de Defensa de la Competencia y de la Protección Intelectual. 2002. NTP 211.001. Bebidas Alcohólicas. Pisco requisitos. Lima – Perú.

Jaramillo, M.; Peguero, J.; de Salazar Martínez, E.; García del Valle, M. 2006. Identificación y Simulación de un Reactor Aerobio Mediante Redes Neuronales. Centro Universitario de Mérida. Universidad de Extremadura España. Disponible en: http://www.cea-ifac.es/actividades/jornadas/XXI/documentos/ja00_050/ja00_050.pdf

Joint FAO/WHO Food Standars Programe, 1987. Codex Standards for Sugars, Cocoa Products and Chocolate and Miscellaneous. Codex Standad for Vinegar. In Codex Alimentarius. Regional European standard, Codex Stan 162. Ginebra.

Lamrini, B.; Benhammou, A.; Le Lann, N.; Karama, A. 2005. Neural Software Sensor for Online Prediction of Coagulant Dosage in a Drinking Water Treatment Plant. Transactions of the Institute of Measurement and Control 27 (3): 195-213.

López, F.; Medina, F.; Prodanov, M.; Güell, C. 2003. Oxidation of Activated Carbon: Application to Vinegar Decolorization. Journal of Colloid & Interface Science 257 (2): 173.

Liu, F.; Wang, L.; Yong, H. 2008. Measurement of Sugar Content of White Vinegars Using Vis/Near-Infrared Spectroscopy and Backpropagation Neural Networks. Proceding of the Seventh International Conference on Machine

Learning and Cybernetics. Kunming. China 1311-1316.

Martín del Brio, B.; Sanz Molina, A. 2002. Redes Neuronales y Sistemas Difusos. Edit. Alfa Omega Ra-Ma. Madrid. España.

Matissek, R.; Schnepel, F. M.; Steiner, G. 1998. Análisis de los Alimentos. Fundamentos - Métodos- Aplicaciones. Edit. Ecribia, S.A. Zaragoza. España.

Mendes, E. F. F. 1999. Redes Neurais: Introdução a Redes Neurais Artificiais, Algorítmos Genéticos e Aplicações. Disponível en: http://www.icmc.sc.usp.br/~prico/ neural1.html

MINAG – Ministerio de Agricultura. 2009. Caracterización del Departamento de la Libertad. Disponible en: htt://www.bcrp.gob.pe/docs/sucursales/Trujillo/la libertad-caracterización.pdf

Nalbant, M.; Gokkaya, H.; Tortas, I. 2007. Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning. Hindawi Publishing Corporation. Modelling and Simulation in Engineering. Disponible en: http://www.hindawi.com/journals/mse/ 2007/092717.abs.html

Ott, D. 1987. Manual de Laboratorio de Ciencias de Alimentos. Edit. Acribia S.A. Zaragoza. España.

Ovejero, M. A.; Lesino, G. 2003. Ensayo de un Conjunto Evaporador Eyector. Avances en Energías Renovables y Medio Ambiente. ASADES. 7 (2). Argentina.

Olmedo, E.; Valderas, J. M.; Mateos, R.; Gimeno, R. 2006. Utilización de Redes Neuronales en la Caracterización, Modelación y Predicción de Series Temporales Económicas en un Entorno Complejo. Universidad de San Pablo – Universidad Pontificia Comillas. España. 1-19.

Ovejero, M. A.; Salvo, N.; Lesino, G. 2000. Resultados preliminares del comportamiento de un evaporador por flash a escala de laboratorio para generación de electricidad a baja temperatura. ASADES 4 (1): 343-348. Resistencia, Argentina.

Pietrzyk, D.; Frank, C. 1983. Química Analítica. Nueva Editorial Interamericana S.A. México D.

Pérez-Akasuso, I; Ibarz-Rivas, A.; Pomar-Gomá, J. 2004. Calculo de Evaporadores. Escuela Superior de Ingeniería Agraria, Universidad de Lleida. España. Edit. Fito, P.; Mulet, A.; Ordica, C.; Bon, J. Disponible en: http://www.upv.es/dtalim/herraweb.htm

Reglamento Sanitario de Manejo de Residuos Peligrosos. 2006. Diario Oficial Nº 209. Republica de Chile Ministerio de Salud.

Scenna, N. J. 1999. Modulo de Simulación de Evaporadores Flash. Modelado, Simulación y Optimización de Procesos Químicos. Edit. Scenna, N.J. 345 – 372.

Suaréz, J. 2002. Impacto de Levaduras y Bacterias en los Aromas Vínicos Fermentativos. Análisis Sensorial-Vino. Ponencias CSCS 2002. Universidad Politécnica de Madrid. 1-4.

Spinnler, M.; Blumenberg, J.; Moik, W.; Müller-Holst, H.; Krispler, H.U. 2000. Small-Scale Systems for Solar-Thermal Desalination of Sea and Brackish Water; India Narosa Publishing House, Renewable Energy Technologies, Vol. Applications to Industries and Agriculture, pages 179-189.

Tesfaye, W.; Morales, M. L.; García-Parrilla, M. C.; Troncoso, A.M. 2002. Wine Vinegar: Technology, Authenticity and Quality Evaluation. Trends in Food Science & Technology 13(1): 12-21.

The vinegar Institute 2003. Disponible en: http://www.versatilevinegar.org

Received: 29/01/10

Accepted: 26/03/10

Corresponding author: E-mail: vjvv@hotmail.com (V. Vásquez)

Published

2010-03-15

How to Cite

Vásquez, V., & Lescano, C. (2010). Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller. Scientia Agropecuaria, 1(1), 63-73. https://doi.org/10.17268/sci.agropecu.2010.01.06

Issue

Section

Original Articles