Mechanical properties of trays based on starch of native plant species and fiber of agroindustrial wastes
DOI:
https://doi.org/10.17268/sci.agropecu.2016.02.06Keywords:
biodegradable, baked foams, sweet potato, arracacha and oca starch, bagasse and asparagus skin fiber, mechanical propertiesAbstract
The aim of this study was to evaluate the effect of natural fibers derived from agro-industrial waste in density, weight and mechanical properties of the termoprensadas foams made of starch native species, such as sweet potatoes, oca and arracacha. The thermoforming process was carried out at a temperature of 145 ° C and a pressure of 60 bar. The baking time was 10-15 min depending on water content in the mixture. The trays were characterized by their density, weight, impact test, deflection tests, colorimetry, hardness, and fracturability values. The trays prepared by thermopressure based on sweet potato starch-bagasse fiber from sugar cane at 15%, and arracacha starch -peladilla asparagus fiber at 30% had higher values in flexural strength versus those made with other types of starches and fibers, including blank tests. Generally, the hardness of the trays is favored with increasing fiber, however fracturability decreases or does not improve the integrity of the polymeric matrix. The results shown in this study allow the preparation of biodegradable trays for various industrial applications.References
Carr, L. G.; Parra, D. F.; Ponce, P.; Lugao, A. B.; & Buchl, P. M. 2006. Influence of fibers on the mechanical properties of cassava starch foams. Journal of Polymer Environment 14: 179–183.
Cinelli, P.; Chiellini, E.; Lawton, J.W.; Imam, S.H. 2006. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polym. Degrad. Stab. 91: 1147–1155.
Chiellini, E.; Cinelli, P.; Ilieva, V.I.; Imam, S.H.; Lawton, J.L. 2009. Environmentally compatible foamed articles based on potato starch, corn fiber, and poly(vinyl alcohol). J. Cell. Plast. 45: 17–32.
Davis, G.; Song, J.H. 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crop. Prod. 23: 147–161.
Dogossy, G.; Czigány, T. 2006. Modelling and investigation of the reinforcing effect of maize hull in PE matrix composites. Polym. Adv. Technol. 17: 825–829.
Famá, L.; Gerschenson, L.; Goyanes, S. 2009. Starch-vegetable fibre composites to protect food products. Carbohydrate Polymers 75(2): 230-235.
Fomin, V.; Guzeev, V. 2001. Biodegradable polymers, their present state and future prospects. Prog. Rubber Plastics Technol. 17 (3): 186–204.
Gàspàr, M.; Benko, Z.; Dogossy, G.; Réczey, K.; Czigàny, T. 2005. Reducing water absorption in compostable starch-based plastics. Polym. Degrad. Stab. 90: 563–569.
Glenn, G.; Orts, W. 2001. Properties of starch-based foam formed by compression/ explosion processing. Ind. Crop. Prod. 13: 135–143.
Glenn, G.; Orts, W.; Nobes, G.A.R.; Gray, G. 2001a. In situ laminating process for baked starch based foams. Ind. Crop. Prod. 14: 125–134.
Glenn, G.; Orts, W.; Nobes, G.A.R. 2001b. Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Ind. Crop. Prod. 14: 201–212.
Kaisangsri N.; Kerdchoechuen O.; Laohakunjit N. 2011. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind. Crop. Prod. 37: 542–346.
Lawton, J.; Shogren, R.; Tiefenbacher, K. 2004. Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Industrial Crops and Products 19: 41–48.
Lee, R.; Pranata, M.; Ustunol, Z; Almenar, E. 2013. Influence of glycerol and water activity on the properties of compressed egg whitebased bioplastics. Journal of Food Engineering 118(1): 132-140.
Lui, W.; Peng, J. 2005. Effects of die shapes and additives on the physical and mechanical properties, and cellular structure of biodegradable cushioning extruded foams. J. Cell. Plast. 41: 437–455.
Mali, S.; Debiagi, F.; Grossmann, M.V.E.; Yamashita, F. 2010. Starch, sugarcane bagasse fibre and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Ind. Crop. Prod. 32: 353–359.
Mello, L.; Mali, S. 2014. Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products 55: 187-193.
Ruggiero, R.; Machado, A.; Hoareau, W.; Gardrat, C.; Nourmamode, A.; Grelier, S.; Castellan, A. 2006. Photodegradation of sugarcane bagasse fibers: influence of acetylation or grafting UV-absorber and/or hindered nitroxide radical on their photostability. J. Braz. Chem. Soc. 17(4): 763–770.
Salgado, P.; Schmidt, V.; Molina Ortiz, S.; Mauri, A.; Laurindo, J. 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering 85(3): 435-443.
Shey, J.; Imam, S.; Glenn, G.; Orts, W. 2006. Properties of baked starch foam with natural rubber latex. Industrial Crops and Products 24: 34–40.
Shogren, R.; Lawton, J.; Teifenbacher, K.; Chen, L. 1998. Starch–poly(vinyl alcohol) foamed articles prepared by a baking process. J. Appl. Polym. Sci. 68: 2129–2140.
Shogren, R.; Lawton, J.; Teifenbacher, K. 2002. Baked starch foams: starch modifications and additives improve process parameters, structure and properties. Ind. Crop. Prod. 16: 69–79.
Soykeabkaew, N.; Supaphol, P.; Rujiravanit, R. 2004. Preparation and characterisation of jute and flax reinforced starch-based composite foams. Carbohydr. Polym. 58: 53–63.
Vercelheze, A.; Oliveira, A.; Rezende, M.; Muller, C.; Yamashita, F.; Mali, S. 2013. Physical Properties, Photo- and Bio-degradation of Baked Foams Based on Cassava Starch, Sugarcane Bagasse Fibers and Montmorillonite. Journal of Polymers and the Environment 21(1): 266-274.
Received December 22, 2015.
Accepted May 17, 2016.
* Corresponding author
E-mail: rsiche@unitru.edu.pe (R. Siche).
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).