Integrated nutrient management as a sustainable strategy to recover a decayed Pear (Pyrus communis) orchard

Autores/as

  • Hugo Poblete Grupo de Investigación en Suelo, Planta, Agua y Ambiente (GISPA). Universidad Técnica Federico Santa María. Avenida Santa María #6400, Santiago. Chile. https://orcid.org/0000-0002-2072-6074
  • Rodrigo Ortega-Blu Grupo de Investigación en Suelo, Planta, Agua y Ambiente (GISPA). Universidad Técnica Federico Santa María. Avenida Santa María #6400, Santiago. Chile. https://orcid.org/0000-0001-8294-1311
  • María Mercedes Martínez TROPEN - Tropical Crops, Institute of Crop Science and Resource Conservation INRES Bonn Universität, Bonn Germany Auf dem Hügel 6, 53121 Bonn, PC. 531113. Germany. https://orcid.org/0000-0001-9028-0752
  • Paola Fincheira Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco. Chile. https://orcid.org/0000-0002-6234-4808

DOI:

https://doi.org/10.17268/sci.agropecu.2021.035

Palabras clave:

Pear, decayed orchards, tree vigor, integrated nutrition management, compost

Resumen

Integrated Nutrition Management (INM) is a concept developed during the last decade in fruit agroecosystems based on the application of organic matter, biostimulants, and adjusted chemical fertilization to improve soil quality, plant rhizogenesis, and nutrition. Nevertheless, there are few studies on the application of the INM concept on the recovery of decayed orchards. The present study was focused on the evaluation of the effects of INM on soil and plant quality changes as recovery indicators of a decayed pear orchard. Two treatments (T1: conventional, T2: INM) were evaluated under three tree vigor levels, during two growing seasons. Old pear trees were used in a factorial experiment of two treatments (control and INM) x three vigor levels, based on a previous aerial Normalized Difference Vegetation Index (NDVI) image. Soil properties, nutrient leaf contents, and NDVI were evaluated. Soil chemical and biological properties and their spatial variability were determined after two and five years of treatment application, respectively. The INM improved β-glucosidase activity, reduced bulk density, and increased soil porosity. Furthermore, nutrient indices (NDVI x N, K, Ca, Mg, Cu, Fe, and B) were significantly increased under INM. After two years, soil chemical properties and root density were improved by INM. A significantly higher yield, soil organic matter, soluble C, and dehydrogenase activity was observed with INM after five growing seasons. The results indicated that INM is a sustainable alternative for recovering decayed orchards, through the inclusion of good-quality organic matter within the management program.

Citas

Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. Journal of Soil Science and Plant Nutrition, 17(3), 794-807.

Angulo, J., Ortega, R., Martínez, M., Molina, M., & Torres, A. (2014). Evaluation of solid and liquid soil organic amendments for agronomic use in Chile. Acta Horticulturae, 1018, 109-114.

Aruani, M., Gili, P., Machuca, Y., & Spera, N. (2012). Evaluación de las características físico-químicas y biológicas en dos suelos superficiales cultivados con pera (Pyrus communis L.) cv. Williams bajo manejo convencional. Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 44(1), 77-84.

Baldi, E., Tosselli, M., & Maragoni, B. (2010a). Nutrient partitioning in potted peach (Prunnus persica L.) trees supplied with mineral and organic fertilizers, Journal of Plant Nutrition, 33, 2050-2061.

Baldi, E., Toselli, M., Esissenstat, D. M., & Marangoni, B. (2010b). Organic fertilization leads to increased peach root production and lifespan. Tree physiology, 30, 1373-1382.

Brunetto, G., Bastos de Melo, G., Toselli, M., Quartieri, M., & Tagliavini, M. (2015). The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticultura, 37(4), 1089-1104.

Burg, P., Zemanek, P., & Michálek, M. (2011). Evaluating of selected parameters of composting process by composting of grape pomace. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(6), 75-80.

Chen, Y., Huang, Y., & Sun, W. (2017). Using organic matter and pH to estimate the bulk density of afforested/reforested soils in Northwest and Northeast China. Pedosphere, 27(5), 890-900.

Das, D., Dwivedi, D. S., & Meena, M. C. (2015). Integrated nutrient management for improving soil health and crop productivity. Indian Journal of Fertilisers, 11(4), 64-83.

Fincheira-Robles, P., Martínez-Salgado, M.M., Ortega-Blu, R., Janssens, M., & Parada-Ibañez, M. (2018). Soil quality indicators in table grape (Vitis vinifera cv. Thompson seedless) crops under integral nutrition management. Scientia Agropecuaria, 9(1), 17-24.

Flores, L., Martínez, M. M., & Ortega, R. (2015). Integrated nutrition program in cherry (Prunus avium L.). Acta Horticulturae, 1076, 187-192.

Food and Agriculture Organization of the United Nations (FAOSTAT). 2018. Production quantities of pears by country.

http://www.fao.org/faostat/en/#data/QC/visualize

Ghosh, D., Mandal, M., & Pattanayak, S.K. (2021). Long term effect of integrated nutrient management on dynamics of phosphorous in an acid inceptisols of tropical India. Communications in Soil Science and Plant Analysis, in press.

Günal, E., Erdem, H., & Demirbaş, A. (2018). Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science, 64(18), 1963-1974.

Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J., & Ruiz-Téllez, T. (2020). A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian amazon. Sustainability, 12, 3007.

Ikinci, A., Bolat, I., Ercisli, S., & Ossama, K. (2014). Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biological Research, 47, 71.

Instituto Nacional de Normalización-INN. (2016). Compost- Quality requirements and classification 2880-2016. 16 p.

Jackson, J. E. (2003). Biology of apples and pears. Cambridge University Press, United Kingdom. 488 p.

Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 13630.

Kranz, C. N., McLaughlin, R. A., Johnson, M.; Miller, G., & Heitman, J. L. (2020). The effects of compost incorporation on soil physical properties in urban soils – A concise review. Journal of Environmental Management, 261, 110209.

Kujur, M., & Kumar Patel, A. (2014). Kinetics of soil enzyme activities under different ecosystems: An index of soil quality. Chilean Journal of Agricultural Research, 74(1), 96-104.

Kumari, R., Kundu, M., Das, A., Rakshit, R., Sahay, S., et al. (2020). Long-term integrated nutrient management improves carbon stock and fruit yield in a subtropical mango (Mangifera indica L.) orchard. Journal of Soil Science and Plant Nutrition, 20, 725-737.

Ling-Fei, X., Peng, Z., Qing-fang, H., Zhi-Hui, L., Bao-Ping, Y., & Jun-Feng, N. (2013). Spatial distribution of soil organic matter and nutrients in the pear orchard under clean and sod cultivation models. Journal of Integrative Agriculture, 12(2), 344-351.

Liu, C.H., Liu, Y., Fan, C., & Kuang, Z. (2013). The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple. Journal of Soil Science and Plant Nutrition, 13(2), 433-444.

Magdoff, F., & Van Es, H. (2010). Building soils for better crops. Sustainable Agriculture Research and Education (SARE) program. 294 pp.

Mariscal-Sancho, I., Ball, B., & McKenzie, B. (2018). Influence of tillage practices, organic manures and extrinsic factors on β-glucosidase activity: The final step of cellulose hydrolysis. Soil Systems, 2, 21.

Martínez, M., Gutiérrez, V., & Novo, R. (2010). Microbiología aplicada al manejo sustentable de suelos y cultivos. Ed. Universidad Santa Maria, Chile. 235 p.

Martínez, M., Ortega, R., Janssens, M., & Fincheira, P. (2018). Use of organic amendments in table grape: effect on plant root system and soil quality indicators. Journal of Soil Science and Plant Nutrition, 18(1), 100-112.

Merino, C., Godoy, R., & Matus, F. (2016). Soil enzymes and biological activity at different levels of organic matter stability. Journal of Soil Science and Plant Nutrition, 16(1), 14-30.

Morales-Olmedo, M., Ortiz, M., & Sellés, G. (2015). Effects of transient soil waterlogging and its importance for rootstock selection. Chilean Journal of Agricultural Research, 75, 45-56.

Morugán-Coronado, A., García-Orenes, F., McMillan, M., & Pereg, L. (2019). The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. Science of the Total Environment, 655, 158-167.

Mulvaney, R. (1996). Methods of Soil Analysis: Chemical Methods. Soil Science Society of America. Madison, United States.

Nimmo, J. R. (2013). Porosity and pore size distribution. Reference Module in Earth Systems and Environmental Sciences. 10 p.

Novo, R., Martínez, M. M., Ortega, R., Ospina, P., & Carrascal-Camacho, K. (2015). Manual de prácticas clásicas en microbiología y bioquímica para el estudio de suelos, bioproductos y materiales orgánicos. Editorial USM. Santiago, Chile. 137 pp.

Oficina de Estudios y Políticas Agrarias - Centro de Información de Recursos Naturales (ODEPA-CIREN). (2017). Catastro frutícola principales resultados Región Metropolitana / Julio 2017. 52 pp.

Oficina de Estudios y Políticas Agrarias (ODEPA). (2018). Boletín de Fruta Fresca Octubre 2018. Santiago, Chile.

Oficina de Estudios y Políticas Agrarias (ODEPA). (2020). Boletín de Fruta Febrero 2020. Santiago, Chile.

Ortega, R., & Fernandez, M. (2007). Agronomic evaluation of liquid humus derived from earthworm humic substances. Journal of Plant Nutrition, 30(12), 2091-2104.

Ortega, R. (2015). Integrated nutrient management in conventional intensive horticulture production systems. Acta Horticulturae, 1076, 159-164.

Ouyang, Y., Reeve, J. R., & Norton, J. M. (2018). Soil enzyme activities and abundance of microbial functional genes involved in nitrogen transformations in an organic farming system. Biology and Fertility of Soils, 54(4), 437-450.

Partey, S., Zougmoren, R., Thevathasan, N., & Preziosi, R. F. (2019). Effects of plant residue decomposition on soil n availability, microbial biomass and β-glucosidase activity during soil fertility improvement in Ghana. Pedosphere, 29(5), 608-618.

Patra, A., Sharma, V. K., Nath, D. J., Purakayastha, T. J., Barman, M., et al. (2021). Impact of long term integrated nutrient management (INM) practice on aluminum dynamics and nutritional quality of rice under acidic Inceptisol. Archives of Agronomy and Soil Science, In press.

Poblete, H., Martínez, M., & Ortega, R. (2013). Integrated plant nutrition on the recovery of a pear (Pyrus communis 'Packam's Triumph') orchard. Acta Horticulturae, 1076, 179-186.

Riches, D., Porter, I. J., Oliver, D. P., Bramley, R. G. V., Rawnsley, B., et al. (2013). Review: soil biological properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research, 19, 311-323.

Roussos, P., Flessoura, I., Petropoulos, F., Massas, I., et al. (2019). Soil physicochemical properties, tree nutrient status, physical, organoleptic and phytochemical characteristics and antioxidant capacity of clementine mandarin (Citrus Clementine cv. SRA63) juice under integrated and organic farming. Scientia Horticulturae, 250, 414-420.

Sadzawka, A. (1990). Métodos de análisis de suelos. Serie La Platina N°16. Instituto de Investigaciones Agropecuarias- INIA. Santiago, Chile. 130 p.

Sadzawka, A., Carrasco, M., Grez, R., Mora, M., Flores, H., & Neaman. (2006). Métodos de análisis recomendados para los suelos de Chile Revisión 2006. Serie actas INIA Nº 34. Instituto de Investigaciones Agropecuarias- INIA. Santiago, Chile. 164 pp.

Sadzawka, A., Carrasco, M., Demanet, R., Flores, H., Grez, R., et al. (2007). Métodos de análisis de tejidos vegetales. Serie actas INIA N°40. Instituto de Investigaciones Agropecuarias- INIA. Santiago. Chile. 120 pp.

Safaei Khorram, M., Zhang, G., Fatemi, A., Kiefer, R., Maddah, K., et al. (2018). Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a four-year field study. Journal of the Science of Food and Agriculture, 99(4), 1862-1869.

Salam, A., Bashir, S., Khan, I., Hussain, Q., Gao, R., & Hu, H. (2019). Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage, and improved biochemical properties in naturally co-contaminated soil. Journal of Soils and Sediments, 19(5), 2381-2392.

Sánchez-Monedero, M. A., Cayuela, M. L., Sánchez-García, M., Vandecasteele, B., D´Hose, T., et al. (2019). Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the european project FERTIPLUS. Agronomy, 9, 225.

Sharma, A., Nath Saha, T., Arora, A., Shah, R., & Nain, L. (2017). Efficient microorganism compost benefits plant growth and improves soil health in calendula and marigold. Horticultural Plant Journal, 3(2), 67-72.

Shunfeng, G. E., Zhanling, Z., Peng, L., Chen, Q., & Jiang, Y. (2018). Soil nutrient status and leaf nutrient diagnosis in the main apple producing regions in China. Horticultural Plant Journal, 4(3), 89-93.

Sorrenti, G., Tosselli, M., & Marangoni, B. (2012). Use of compost to manage Fe nutrition of pears trees grown in calcareous soil. Scientia Horticulturae, 136, 87-94.

Triverdi, A., Bhattacharyya, R., Biswas, D.R., Das, S., Das, T.K., et al. (2020). Long-term impacts of integrated nutrient management with equivalent nutrient doses to mineral fertilization on soil organic carbon sequestration in a sub-tropical Alfisol of India. Carbon Management, 11, 483-497.

Universidad de Talca. (2018). Boletín Técnico Pomáceas. Boletín Técnico Universidad de Talca, 18(1). Recuperado de: http://pomaceas.utalca.cl.

Tan, C. W., Zhang, P. P., Zhou, X. X., Wang, Z. X., Xu, Z. Q., et al. (2020). Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Scientific Reports, 10, 929.

Van Schoor, L., Stassen, P. J. C., & Botha, A. (2012). Effect of organic material and biological amendments on pear tree performance and soil microbial and chemical properties. Acta Horticulturae, 933, 205-214.

Wasaya, A., Zhang, X., Fang, Q., & Yang, Z. (2018). Root phenotyping for drought tolerance: A review. Agronomy, 8, 241.

Wu, W., & Ma, B. (2015). Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Science of the Total Environment, 512, 415-427.

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: a review of developments and applications. Journal of Sensors, 2017, ID 1353691.

Descargas

Publicado

2021-07-20

Cómo citar

Poblete, H. ., Ortega-Blu, R. ., Mercedes Martínez, M. ., & Fincheira, P. . (2021). Integrated nutrient management as a sustainable strategy to recover a decayed Pear (Pyrus communis) orchard. Scientia Agropecuaria, 12(3), 319-327. https://doi.org/10.17268/sci.agropecu.2021.035

Número

Sección

Artículos originales