Calidad de compost obtenido a partir de estiércol de gallina, con aplicación de microorganismos benéficos
DOI:
https://doi.org/10.17268/sci.agropecu.2019.03.05Palabras clave:
Consorcios microbianos, compostaje, industria avícola, estiércol.Resumen
El objetivo de esta investigación fue evaluar la calidad del compost obtenido a partir de estiércol de gallinas, con inoculación de microorganismos benéficos autóctonos. La investigación se realizó durante 13 semanas; a nivel de campo se extrajo consorcios microbianos beneficiosos CMB1de col (Brassica oleracea) y CMB2 de hierba luisa (Cymbopogon citratus) los cuales se inocularon una vez por semana al 5% de concentración en las pilas de compostaje distribuidas en bloque completos al azar con tres repeticiones, se estableció tres tratamientos T1 (CMB1), T2 (CMB2) y T3 (Testigo). Se determinó que los consorcios microbianos benéficos suprimen los malos olores en el proceso de compostaje, a la par aceleran la degradación de la materia orgánica lo cual se evidencia en el mayor contenido de ácidos húmicos en el compost final en comparación con el control: T1 = (3-4%), T2 = (3%), (T3) = 1%. En el compost obtenido con inoculación de CMB1 y CMB2 se determinó mayor actividad biológica: T1 = 3 ug/ml, T2 = 4 ug/ml, T3 = 1 ug/ml, además se identificaron microorganismos benéficos en mayor concentración (log UFC.g-1) así como más alto contenido de nutrientes con respecto al tratamiento testigo, por tanto, de calidad superior.
Citas
Al-Bataina, B.B.; Young, T.M.; Ranieri, E. 2016. Effects of compost age on the release of nutrients. International Soil and Water Conservation Research 4(3): 230-236.
Alvarez-Vera, M.; Vázquez, J.; Castillo, J.; Tucta, F.; Meza, V. 2018. Potencial de la flora de la provincia del Azuay (Ecuador) como fuente de microorganismos benéficos. Scientia Agrope-cuaria 9(4): 561-568.
Alvarez, M.; Tucta, F.; Quispe, E.; Meza, V. 2018. Incidencia de la inoculación de microorganismos benéficos en el cultivo de fresa (Fragaria sp.). Scientia Agropecuaria 9(1): 33-42.
Antunes, L.P.; Martins, L.F.; Pereira, R.V.; Thomas, A.M.; Barbosa, D.; Lemos, L.N.; Silva, G.M.M.; Moura, L.M.S.; Epamino, G.W.C.; Digiampietri, L.A.; Lombardi, K.C.; Ramos, P.L.; Quaggio, R.B.; De Oliveira, J.C.F.; Pascon, R.C.; Da Cruz, J.B.; Da Silva, A.M.; Setubal, J.C. 2016. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports 6: 1-13.
Aye, SL. 2016. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Jour. Myan. Acad. Arts & Sc. XIV (1): 317-331.
Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadr, B. 2010. Uses and management of poultry litter. World’s Poultry Science 66(4): 673-698.
Brandelli, A.; Sala, L.; Kalil, S.J. 2015. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International 73: 3-12.
Breitenbeck, G.A.; Schellinger, D. 2004. Calculating the reduction in material mass and volume during composting. Compost Science & Utilization 12(4): 365-371.
Chandna, P.; Nain, L.; Singh, S.; Kuhad, R.C. 2013. Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiology 13(99): 1-14.
Fan, Y Van.; Lee, C.T.; Klemes, J.J.; Chua, L.S.; Sarmidi, M.R.; Leow, CW. 2018. Evaluation of Effective Microorganisms on home scale organic waste composting. Journal of Environmental Management 216: 41-48.
Guo, X.; Liu, H.; Wu, S. 2019. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of the Total Environment 662: 501-510.
He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F.; Tang, S. 2013. Evolution of microbial community diversity and enzymatic activity during composting. Research in Micro-biologoy 164: 189-198.
Hernández-Cázares, A.S.; Real-Luna, N.; Del-gado-Blancas, M.I.; Bautista-Hernández, L.; Velasco-Velasco, J. 2016. Residuos agroindustriales con potencial de compostaje. Agroproductividad 9(8): 10-17.
Joshua, O.O. 2013. Solid waste management for sustainable development and public health: A case study of Lagos State in Nigeria. Universal Journal of Public Health 1(3): 33-39.
Jurado, M.; López, M.J.; Suárez-Estrella, F.; Vargas-García, M.C.; López-González, J.A.; Moreno, J. 2014. Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresource Technology 162: 283-293.
Karnchanawong, S.; Nissaikla, S. 2014. Effects of microbial inoculation on composting of household organic waste using passive aeration bin. International Journal of Recycling of Organic Waste in Agriculture 3(4): 113-119.
Khater, E.-S.G. 2015. Some physical and chemical properties of compost. International Journal of Waste Resources 5(1): 1-5.
Kopec, M.; Gondek, K.; Mierzwa-Hersztek, M.; Antonkiewicz, J. 2018. Factors influencing chemical quality of composted poultry waste. Saudi Journal of Biological Sciences 25: 1678-1686.
Kumar, B.L; Gopal, D.V.R.S. 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5(6): 867-876.
Liu, L.; Wang, S.; Guo, X.; Zhao, T.; Zhang, B. 2018. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Management 73: 101-112.
López-González, J.A; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; Jurado, M.M.; Moreno, J. 2015. Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality and biodiversity. Bioresource Technology 175: 406-416.
Mahawar, H.; Prasanna, R. 2018. Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture. Environmental Nanotechnology, Monitoring & Management 10: 477-485.
Mahmud, A.; Mehmood, S.; Hussain, J.; Ahmad, S. 2015. Composting of poultry dead birds and litter. World’s Poultry Science Journal 71(4): 621-629.
Marešová, K.; Kollárová, M. 2010. Influence of compost covers on the efficiency of biowaste composting process. Waste Management 30: 2469-2474.
Muscolo, A.; Papalia, T.; Settineri, G.; Mallamaci, C.; Jeske-Kaczanowska, A. 2018. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties. Journal of Cleaner Production 195: 93-101.
Nadia, O.F.; Xiang, L.Y.; Lie, L.Y.; Dzulkornain, C.A.; Mohammed, M.A.P.; Baharuddin, A.S. 2015. Investigation of physico-chemical properties and microbial community during poultry manure co-composting process. Journal of Environmental Sciences 28: 81-94.
Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. 2018. Composting: The way for a sustainable agriculture. Applied Soil Ecology 123: 744-750.
Ribeiro, N.D.Q.; Souza, T.P.; Costa, L.M.A.S.; De Castro, C.P.; Dias, E.S. 2017. Microbial additives in the composting process. Ciência e Agrotecnologia 41(2):159-168.
Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. 2017. Compost supplementation with nutrients and microorganisms in composting process. Waste Management 69: 136-153.
Sarkar, S.; Pal, S.; Chanda, S. 2016. Optimization of a vegetable waste composting process with a significant thermophilic phase. Procedia Environmental Sciences 35: 435-440.
Sharma, A.; Saha, T.N.; Arora, A.; Shah, R.; Nain, L. 2017. Efficient Microorganism compost benefits plant growth and improves soil health in calendula and marigold. Horticultural Plant Journal 3(2): 67-72.
Viaene, J.; Lancker, J. Van.; Vandecasteele, B.; Willekens, K.; Bijttebier, J.; Ruysschaert, G.; Neve, S. De; Reubens, B. 2016. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe. Waste Management 48: 181-192.
Villar, I.; Alves, D.; Garrido, J.; Mato, S. 2016. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Management 54: 83-92.
Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, H.; Wang, Y.; Chen, S. 2016. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environmental Sciences 31: 12-17.
Wang, J.; Song, Y; Ma, T.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.; Shen, Q. 2017. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology 112: 42-50.
Wang, X.; Cui, H.; Shi, J.; Zhao, X.; Zhao, Y.; Wei, Z. 2015. Bioresource technology relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresource Technology 198: 395-402.
Received March 7, 2019.
Accepted September 9, 2019.
Corresponding author: malvarezv@ucacue.edu.ec (M. Alvarez-Vera).
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).