Caracterización de las harinas de trigo (Triticum aestivum), y de residuo de naranja (Citrus x aurantium) y de manzana (Malus domestica) para su aplicación en alimentos

Autores/as

  • Gloria J. Pascual-Chagman Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina, Lima.
  • Christian R. Encina-Zelada Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina, Lima.

DOI:

https://doi.org/10.17268/agroind.sci.2022.03.06

Palabras clave:

Triticun durm, Citrus x sinensis, Malus doméstica, análisis granulométrico, fibra dietaria

Resumen

Se produjeron harinas a partir de residuos (cáscara) de naranja y manzana. Posteriormente, se evaluó su composición proximal, fibra dietaria, granulometría, análisis microbiológico y las coordenadas de color (L*, a* y b*). Los resultados revelaron que las harinas de residuo de naranja (HRN) y harina de residuo de manzana (HRM) tienen un alto contenido en fibra (> 37%) y en la granulometría se obtuvo un 72 % de retención con una malla de 425 µm tanto para la HRN y HRM. Respecto a las coordenadas del color los mayores valores fueron para L* (91,44) para HT, a* (6,51) para HRM y b* (22,66) para HRN. Todas las harinas cumplen los requisitos microbiológicos establecidos por la normativa local. Las harinas de residuos tienen un valor energético similar al de la harina de trigo y otras harinas convencionales, por lo que este estudio reveló que las harinas producidas a partir de la cáscara de naranja y manzana que se generan en grandes cantidades como subproductos agroindustriales, pueden utilizarse como ingredientes alternativos en diversos sectores de la industria alimentaria.

Citas

Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093

Almeida, J. dos S. O. de, Dias, C. O., Arriola, N. D. A., de Freitas, B. S. M., de Francisco, A., Petkowicz, C. L. O., Araujo, L., Guerra, M. P., Nodari, R. O., & Amboni, R. D. M. C. (2020). Feijoa (Acca sellowiana) peel flours: A source of dietary fibers and bioactive compounds. Food Bioscience, 38, 100789. https://doi.org/10.1016/j.fbio.2020.100789

Aschemacher, N. (2014). Determinación del contenido de nutrientes en frutas, hortalizas y productos derivados (conservas, congelados), y desarrollo de una tabla de información nutricional para este grupo de alimentos. XXI Encuentro de Jóvenes Investigadores de La Universidad Nacional Del Litoral. Ciencias de La Salud. Nutrición. Grupo X., 1–4.

Bolanho, B. C., Danesi, E. D. G., & Beléia, A. D. P. (2015). Carbohydrate composition of peach palm (Bactris gasipaes Kunth) by-products flours. Carbohydrate Polymers, 124, 196–200. https://doi.org/10.1016/j.carbpol.2015.02.021

Brito, T. B., Carrajola, J. F., Gonçalves, E. C. B. A., Martelli-Tosi, M., & Ferreira, M. S. L. (2019). Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International, 121, 412–421. https://doi.org/10.1016/j.foodres.2019.03.058

Bussolo de Souza, C., Jonathan, M., Isay Saad, S. M., Schols, H. A., & Venema, K. (2018). Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioactive Carbohydrates and Dietary Fibre, 16, 90–99. https://doi.org/10.1016/j.bcdf.2018.08.001

Cardoso, R. V. C., Fernandes, Â., Heleno, S. A., Rodrigues, P., Gonzaléz-Paramás, A. M., Barros, L., & Ferreira, I. C. F. R. (2019). Physicochemical characterization and microbiology of wheat and rye flours. Food Chemistry, 280, 123–129. https://doi.org/10.1016/j.foodchem.2018.12.063

Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: A review. Journal of Food Science and Technology, 49(3), 255–266. https://doi.org/10.1007/s13197-011-0365-5

Do Espírito Santo, A. P., Cartolano, N. S., Silva, T. F., Soares, F. A. S. M., Gioielli, L. A., Perego, P., Converti, A., & Oliveira, M. N. (2012). Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. International Journal of Food Microbiology, 154(3), 135–144. https://doi.org/10.1016/j.ijfoodmicro.2011.12.025

Ferreira, M. S. L., Santos, M. C. P., Moro, T. M. A., Basto, G. J., Andrade, R. M. S., & Gonçalves, É. C. B. A. (2015). Formulation and characterization of functional foods based on fruit and vegetable residue flour. Journal of Food Science and Technology, 52(2), 822–830. https://doi.org/10.1007/s13197-013-1061-4

Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395–401. https://doi.org/10.1016/j.foodchem.2004.04.036

Frakolaki, G., Giannou, V., Topakas, E., & Tzia, C. (2018). Chemical characterization and breadmaking potential of spelt versus wheat flour. Journal of Cereal Science, 79, 50–56. https://doi.org/10.1016/j.jcs.2017.08.023

Garcia-Amezquita, L. E., Tejada-Ortigoza, V., Campanella, O. H., & Welti-Chanes, J. (2018). Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/9105237

Gómez, M., & Martinez, M. M. (2018). Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Critical Reviews in Food Science and Nutrition, 58(13), 2119–2135. https://doi.org/10.1080/10408398.2017.1305946

Gorjanović, S., Micić, D., Pastor, F., Tosti, T., Kalušević, A., Ristić, S., & Zlatanovic, S. (2020). Evaluation of apple pomace flour obtained industrially by dehydration as a source of biomolecules with antioxidant, antidiabetic and antiobesity effects. Antioxidants, 9(5), 1–19. https://doi.org/10.3390/antiox9050413

Gutiérrez, E. (2016). Elaboración de panes con fibra dietaria por adición de bagazo de manzana (Malus domestica) y mandarina (Citrus reticulata) en polvo. May. https://doi.org/10.13140/RG.2.1.4218.2000.

Moreno, Antonia. Heredia.; Jimenez, Ana. José, Fernandez-Bolaños, Juan.; Guillen Bejarano, Rafael.; Rodríguez, Rocio. 2003. Fibra alimentaria. Editorial. CSIC. Madrid. España. 280 pag.

Hədərugə, D. I., Costescu, C. I., Corpaş, L., Hədərugə, N. G., & Isengard, H. D. (2016). Differentiation of rye and wheat flour as well as mixtures by using the kinetics of Karl Fischer water titration. Food Chemistry, 195, 49–55. https://doi.org/10.1016/j.foodchem.2015.08.124

ICMSF. (2000). The International Commission on Microbiological Specifications for Foods (E. Acribia (ed.); Vol I. Par).

Kırbaş, Z., Kumcuoglu, S., & Tavman, S. (2019). Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. Journal of Food Science and Technology, 56(2), 914–926. https://doi.org/10.1007/s13197-018-03554-z

Lin, J., Gu, Y., & Bian, K. (2019). Bulk and Surface Chemical Composition of Wheat Flour Particles of Different Sizes. Journal of Chemistry, 2019, 10–12. https://doi.org/10.1155/2019/5101684

Marçal, S., & Pintado, M. (2021). Mango peels as food ingredient / additive: nutritional value, processing, safety and applications. Trends in Food Science and Technology, 114, 472–489. https://doi.org/10.1016/j.tifs.2021.06.012

Martínez-Girón, J., Rodríguez-Rodríguez, X., Pinzón-Zárate, L. X., & Ordóñez-Santos, L. E. (2017). Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Ciencia y Tecnologia Agropecuaria, 18(3), 599–613. https://doi.org/10.21930/rcta.vol18_num3_art:747

Martinez, G., Diaz, C., & Martinez, L. (2015). Propiedades hidrodinamicas de la fibra dietaria a partir de harina de cascaras de naranja (Citrus sinensis) y mango (Mangifera indica L). Ingenium, 9(26), 11–19.

Mello, R. E., Fontana, A., Mulet, A., Corrêa, J. L. G., & Cárcel, J. A. (2021). PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. Innovative Food Science and Emerging Technologies, 72(July). https://doi.org/10.1016/j.ifset.2021.102753

Montagnese, C., Santarpia, L., Iavarone, F., Strangio, F., Caldara, A. R., Silvestri, E., Contaldo, F., & Pasanisi, F. (2017). North and South American countries food-based dietary guidelines: A comparison. Nutrition, 42, 51–63. https://doi.org/10.1016/j.nut.2017.05.014

Nasir, S., Allai, F. M., Gani, M., Ganaie, S., Gul, K., Jabeen, A., & Majeed, D. (2020). Physical, Textural, Rheological, and Sensory Characteristics of Amaranth-Based Wheat Flour Bread. International Journal of Food Science, 2020. https://doi.org/10.1155/2020/8874872

Norma Técnica Peruana 205.064. 2015. Trigo. Harina de trigo para consumo humano. Requisitos. Segunda edición.

Plavsic, D., Skrinjar, M., Psodorov, D., Saric, L., Psodorov, D., Varga, A., & Mandic, A. (2017). Mycopopulations of grain and flour of wheat, corn and buckwheat. Food and Feed Research, 44(1), 39–45. https://doi.org/10.5937/ffr1701039p

Ponce, J. C., Malaga, J., Huamani, A., & Chuqui, S. (2016). Optimización de la concentración de la α-amilasa y lactosuero en el mejoramiento de las características tecnológicas, nutricionales y sensoriales del pan francés. Agroindustrial Science, 5(1), 127–132.

Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering, 5(4), 1–20. https://doi.org/10.3390/bioengineering5040093

Resende, L. M., & Franca, A. S. (2019). Flours based on exotic fruits and their processing residues-features and potential applications to health and disease prevention. Flour and Breads and Their Fortification in Health and Disease Prevention, 387–401. https://doi.org/10.1016/B978-0-12-814639-2.00030-7

Rossetto, R., Maciel, G. M., Bortolini, D. G., Ribeiro, V. R., & Isidoro, C. W. (2020). Acai pulp and seeds as emerging sources of phenolic compounds for enrichment of residual yeasts (Saccharomyces cerevisiae) through the biosorption process. Journal Food Science and Technology, 128, 109–447. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109447.

Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Residuos de frutas y verduras: compuestos bioactivos, su extracción y posible utilización. Rev.Food Science, 17, 512–531.

Sanchez, I. (2016). Nutrientes y compuestos bioactivos del trigo: fibra y polifenoles. Trabajo Fin de Grado Farmacia. Universidad Complutense de Madrid.

Stephen, A. M., Champ, M. M. J., Cloran, S. J., Fleith, M., van Lieshout, L., & Mejborn, H. (2017). Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews, 30(2), 149–190.

Umbreen, H., Arshad, M. U., Noreen, R., & Aftab, K. (2020). Ameliorative effect of apple pomace and mango peels against hyperlipidemia and lipid peroxidation induced by hyperlipidemic diet. Sains Malaysiana, 49(6), 1273–1282.

Yin, X. A., Liu, Y., Yang, Z., Zhao, Y., Cai, Y., Sun, T., & Yang, W. (2018). Eco-compensation standards for sustaining high flow events below hydropower plants. Journal of Cleaner Production, 182, 1–7. https://doi.org/10.1016/j.jclepro.2018.01.204

Descargas

Publicado

2022-12-19

Cómo citar

Pascual-Chagman, G. J. ., & Encina-Zelada, C. R. . (2022). Caracterización de las harinas de trigo (Triticum aestivum), y de residuo de naranja (Citrus x aurantium) y de manzana (Malus domestica) para su aplicación en alimentos. Agroindustrial Science, 12(3), 279-286. https://doi.org/10.17268/agroind.sci.2022.03.06

Número

Sección

Artículos de investigación