Biología y performance del predador Hippodamia convergens, alimentado con pulgones de col Brevicoryne brassicae, Myzaphis rosarum y Myzus persicae

Autores/as

  • Amador Valverde Cadillo Facultad de Agronomía, Universidad Nacional del Centro del Perú-Huancayo. Av. Mariscal Castilla 3909 – Ciudad Universitaria, Huancayo.
  • Neryeling Valverde Apfata Compañía Minera Chungar SAC, Cerro de Pasco.
  • Roberto Solano Porras Facultad de Agronomía, Universidad Nacional del Centro del Perú-Huancayo. Av. Mariscal Castilla 3909 – Ciudad Universitaria, Huancayo.

DOI:

https://doi.org/10.17268/agroind.sci.2022.03.01

Palabras clave:

Brevicoryne brassicae, Hippodamia convergens, predador, biología, control biológico

Resumen

El pulgón Brevicoryne brassicae es plaga de importancia en varias plantas de la familia Brassicaceae a nivel mundial. En el valle del Mantaro-Perú, causa pérdidas económicas en cultivos de col y brócoli. Myzus persicae es como la plaga más importante en cultivo de papa. Myzaphis rosarum coloniza rosales y árboles tanto silvestres como cultivados. Los agricultores para controlarlo utilizan insecticidas químicos tóxicos que generan problemas para la salud. Ante este problema, el biocontrol es un componente importante de la producción sostenible para controlar plagas. Hippodamia convergens es predador de pulgones, por lo que es necesario conocer su biología y predación en sus diferentes presas. El objetivo fue determinar la duración de los estados de desarrollo, longevidad, fecundidad y performance del predador H. convergens criado con pulgón de col B. barssicae, Myzaphis rosarum y Myzus persicae. Se aplicó el diseño completamente al azar, con 10 repeticiones y tres tratamientos o especies de pulgones. La especie de pulgón utilizado como alimentación del predador influyó en la duración del desarrollo preimaginal y adulto. El desarrollo huevo-adulto fue más prolongado con 34,1 días con B. brassicae y más corto con M. rosarum y M. persicae con 22,8 y 22,5 días respectivamente. Los glucosinolatos de la col absorbidos por B. barssicae afectaron en forma negativa la tasa de crecimiento, desarrollo, ganancia de peso, supervivencia, fecundidad y capacidad de predación de H. convergens.

Citas

Abbas, K., Zaib, M. S., Zakria, M., Hani, U. E., Zaka, S. M., & Ane, M. N. U. (2020). Cheilomenes sexmaculata (Coccinellidae: Coleoptera) as a potential biocontrol agent for aphids based on age-stage, two-sex life table. PLoS ONE, 15(9). https://doi.org/10.1371/journal.pone.0228367

Abdel-Wahab, A. H., Michaud, J. P., Bayoumy, M. H., Awadalla, S. S., & El-Gendy, M. (2017). Differences in Flight Activity of Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae) Following Emergence, Mating, and Reproduction. Environmental Entomology, 46(6), 1359–1364. https://doi.org/10.1093/ee/nvx136

Alvarado-Canche, C. N., Castillo Reyes, F., González-Vázquez, V. M., Garcia-Martinez, O., Aguirre-Uribe, L. A., Tiscareño-Iracheta, M. A., … & Rodríguez-Herrera, R. (2019). Population genetics of lepidopteran (noctuidae) collected on transgenic and non-transgenic maize in Mexico. Acta Universitaria, 29, 1–12. https://doi.org/10.15174/au.2019.1926

Arnold, P. A., Cassey, P., & White, C. R. (2016). Maturity matters for movement and metabolic rate: Trait dynamics across the early adult life of red flour beetles. Animal Behaviour, 111, 181–188. https://doi.org/10.1016/j.anbehav.2015.10.023

Arshad, M., Ullah, M. I., Shahid, U., Tahir, M., Khan, M. I., Rizwan, M., … & Niaz, M. M. (2020). Life table and demographic parameters of the coccinellid predatory species, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) when fed on two aphid species. Egyptian Journal of Biological Pest Control, 30(1), 79. https://doi.org/10.1186/s41938-020-00280-7

Bayoumy, M. H., & Michaud, J. P. (2015). Egg Cannibalism and Its Life History Consequences Vary with Life Stage, Sex, and Reproductive Status in Hippodamia convergens (Coleoptera: Coccinellidae). Journal of Economic Entomology, 108(4), 1665–1674. https://doi.org/10.1093/jee/tov148

Bridges, M., Jones, A. M. E., Bones, A. M., Hodgson, C., Cole, R., Bartlet, E., … & Rossiter, J. T. (2002). Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proceedings of the Royal Society B: Biological Sciences, 269(1487), 187–191. https://doi.org/10.1098/rspb.2001.1861

Bustamante-Navarrete, A. (2020). Algunos coccinellidos (Coleóptera: Coccinellidae) predadores de importancia económica en el departamento del Cusco, Perú. The Biologist, 18(2), 287–314. https://doi.org/10.24039/rtb2020182801

Cevallos Cevallos, D., Santana Cedeño, J., & Chirinos, D. T. (2021). Predators and the management of some agricultural pests in Ecuador. Manglar, 18(1), 51–59. https://doi.org/10.17268/manglar.2021.007

Chaplin-Kramer, R., Kliebenstein, D. J., Chiem, A., Morrill, E., Mills, N. J., & Kremen, C. (2011). Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators. Journal of Applied Ecology, 48(4), 880–887. https://doi.org/10.1111/j.1365-2664.2011.01990.x

Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics,10, 783–796. https://doi.org/10.1038/nrg2664

Cibils-Stewart, X., Nechols, J., Giles, K., & McCornack, B. P. (2018). Feeding location of aphid prey affects life history traits of a native predator. BioRxiv, pp. 1–28. https://doi.org/10.1101/429415

Delgado-Ramírez, C. S., Salas-Araiza, M. D., Martínez-Jaime, O. A., Guzmán-Mendoza, R., & Flores-Mejia, S. (2019). Predation capability of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) feeding of Melanaphis sacchari (Hemiptera: Aphididae). Florida Entomologist, 102(1), 24–28. https://doi.org/10.1653/024.102.0104

Fidelis, E. G., Santos, A. A., Sousa, F. F., Silva, R. S. da, Dângelo, R. A. C., & Picanço, M. C. (2018). Predation is the key mortality factor for Brevicoryne brassicae in cabbage crops. Biocontrol Science and Technology, 28(12), 1164–1177. https://doi.org/10.1080/09583157.2018.1516735

Gajger, I. T., & Dar, S. A. (2021, March 1). Plant allelochemicals as sources of insecticides. Insects, Vol. 12, pp. 1–21. https://doi.org/10.3390/insects12030189

Grenier, C., Summerhays, B., Cartmill, R., Martinez, T., Saisho, R., Rothenberg, A., … & Sethuraman, A. (2019). Lack of phenotypic variation in larval utilization of pea aphids in populations of the ladybeetle Hippodamia convergens. BioRxiv, p. 740506. https://doi.org/10.1101/740506

Hinkelman, T. M., & Tenhumberg, B. (2013). Larval performance and kill rate of convergent ladybird beetles, Hippodamia convergens, on black bean aphids, Aphis fabae, and pea aphids, Acyrthosiphon pisum. Journal of Insect Science, 13. https://doi.org/10.1673/031.013.4601

Hopkins, R. J., Van Dam, N. M., & Van Loon, J. J. A. (2009). Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology, 54, 57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623

Jackson, K. (2016). Variable Consequences of Toxic Prey on Generalist Insect Predators. Theses and Dissertations--Entomology. https://doi.org/10.13023/ETD.2016.374

Jackson, K. A., McCord, J. S., & White, J. A. (2017). A window of opportunity: Subdominant predators can use suboptimal prey. Ecology and Evolution, 7(14), 5269–5275. https://doi.org/10.1002/ece3.3139

Jessie, C. N., Giles, K. L., Royer, T. A., Payton, M. E., Elliott, N. C., & Jessie, W. P. (2019). Suitability of Schizaphis graminum Parasitized by Lysiphlebus testaceipes as Intraguild Prey for Chrysoperla rufilabris. Southwestern Entomologist, 44(1), 21. https://doi.org/10.3958/059.044.0103

Jessie, W. P., Giles, K. L., Rebek, E. J., Payton, M. E., Jessie, C. N., & McCornack, B. P. (2015). Preference and Performance of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) on Brevicoryne brassicae, Lipaphis erysimi, and Myzus persicae (Hemiptera: Aphididae) from Winter-Adapted Canola. Environmental Entomology, 44(3), 880–889. https://doi.org/10.1093/ee/nvv068

Khan, M. H., & Yoldaş, Z. (2018). Cannibalistic behavior of aphidophagous coccinellid, Hippodamia variegata (Goeze, 1777) (Coleoptera: Coccinellidae). Turkiye Entomoloji Dergisi, 42(3): 175–184. https://doi.org/10.16970/entoted.397666

Kovacs, J. L., Wolf, C., Voisin, D., & Wolf, S. (2017). Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles. PLOS ONE, 12(9), e0184150. https://doi.org/10.1371/journal.pone.0184150

Mallma Goyes, Ana y Eraso Gómez, R. (2015). Determinación del ciclo biológico de Hippodamia convergens Guerin-Meneville, 1842 (Coleoptera: Coccinellidae) y su capacidad predadora de áfidos (Aphis sp.) en condiciones de laboratorio.

Matos, Sidnéia T., & Andrade, Daniel J. (2020). Potencıal de Eriopis connexa e Hippodamia convergens (Coleoptera: Coccınellıdae) no controle de ácaros tetranıquídeos e do pulgão-verde-do-pessegueıro. Tesis Maestría. Universidade Estadual Paulista.

Mendoza P, &Tatiana E. (2020). Cria y reproducción de coccinélidos con la utilización de distintas fuentes de alimentación en la granja experimental La Prodera. Tesis para título. Universidad del Norte. Ibarra. Ecuador.

Mercer, N. H., Teets, N. M., Bessin, R. T., & Obrycki, J. J. (2020). Supplemental Foods Affect Energetic Reserves, Survival, and Spring Reproduction in Overwintering Adult Hippodamia convergens (Coleoptera: Coccinellidae). Environmental Entomology, 49(1), 1–9. https://doi.org/10.1093/ee/nvz137

Michaud, J. P. (2018). Problems Inherent to Augmentation of Natural Enemies in Open Agriculture. Neotropical Entomology, Vol. 47, pp. 161–170. https://doi.org/10.1007/s13744-018-0589-4

Milléo, J., Moral, R. de A., Fernandes, F. S., & Godoy, W. A. C. (2019). Resposta funcional comparada entre Harmonia axyridis (Pallas), Cycloneda sanguinea (Linnaeus) e Hippodamia convergens Guerin Meneville (Coleoptera: Coccinellidae) alimentadas com Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae). EntomoBrasilis, 12(2), 70–76. https://doi.org/10.12741/ebrasilis.v12i2.796

Navarrete Bernando. (2016). Rearing of Hippodamia convergens Guérin-Méneville 1842 (Coleoptera: Coccinellidae). https://doi.org/DOI: 10.13140/RG.2.1.2954.3284

Omkar, & Pervez, A. (2016). Ladybird Beetles. In Ecofriendly Pest Management for Food Security (pp. 281–310). https://doi.org/10.1016/B978-0-12-803265-7.00009-9

Perez-Alvarez, R., Nault, B. A., & Poveda, K. (2019). Effectiveness of augmentative biological control depends on landscape context. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-45041-1

Rejan, J., Latha, S., Rhagavendra, V., & Sreenivasa, R. (2018). Biology and feeding potential of Coccinella transversalis (Fab.) on cabbage aphid, Brevicoryne brassicae (Linn.). Journal of Entomology and Zoology Studies, 6(6), 51–56.

Riddick, E. W. (2017). Identification of conditions for successful aphid control by ladybirds in greenhouses. Insects, Vol. 8. https://doi.org/10.3390/insects8020038

Rashed, H. (2020). Efficiency of the convergent ladybird beetle Hippodamia convergens against the legume aphid Aphis craccivora in laboratory and semi-felid conditions. Annals of Agricultural Science, Moshtohor, 58(3), 655–664. https://doi.org/10.21608/assjm.2020.131640

Sicsú, P. R., Macedo, R. H., & Sujii, E. R. (2020). Lady Beetle Oviposition Site Choices: Maternal Effects on Offspring Performance. Florida Entomologist, 103(2), 228. https://doi.org/10.1653/024.103.0212

Stowe, H. E., Michaud, J. P., & Kim, T. (2021). The Benefits of Omnivory for Reproduction and Life History of a Specialized Aphid Predator, Hippodamia convergens (Coleoptera: Coccinellidae). Environmental Entomology, 50(1), 69–75. https://doi.org/10.1093/ee/nvaa154

Sun, R., Jiang, X., Reichelt, M., Gershenzon, J., & Vassão, D. G. (2020). The selective sequestration of glucosinolates by the cabbage aphid severely impacts a predatory lacewing. Journal of Pest Science, 1, 3. https://doi.org/10.1007/s10340-020-01319-2

Ugine, T. A., Gill, H. K., Hernandez, N., Grebenok, R. J., Behmer, S. T., & Losey, J. E. (2021). Predator Performance and Fitness Is Dictated by Herbivore Prey Type Plus Indirect Effects of their Host Plant. Journal of Chemical Ecology, 1–12. https://doi.org/10.1007/s10886-021-01251-4

Wheeler, C. A., & Cardé, R. T. (2014). Following in Their Footprints: Cuticular Hydrocarbons as Overwintering Aggregation Site Markers in Hippodamia convergens. Journal of Chemical Ecology, 40(5), 418–428. https://doi.org/10.1007/s10886-014-0409-1

Descargas

Publicado

2022-12-19

Cómo citar

Valverde Cadillo, A. ., Valverde Apfata, N. ., & Solano Porras, R. . (2022). Biología y performance del predador Hippodamia convergens, alimentado con pulgones de col Brevicoryne brassicae, Myzaphis rosarum y Myzus persicae. Agroindustrial Science, 12(3), 235-243. https://doi.org/10.17268/agroind.sci.2022.03.01

Número

Sección

Artículos de investigación

Artículos más leídos del mismo autor/a