Agroclimatic zoning and multicriteria analysis of teak (Tectona grandis L.) in the Central Coastal region of Ecuador

Authors

  • Danilo Yánez-Cajo Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo. Quevedo, Los Ríos, Ecuador.
  • Ronald Oswaldo Villamar-Torres Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo. Quevedo, Los Ríos, Ecuador.
  • Gregorio Vásconez Montufar Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo. Quevedo, Los Ríos, Ecuador.
  • María Eugenia Romero Román Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo. Quevedo, Los Ríos, Ecuador.
  • Érika Quiñonez-Campos Investigador Independiente. Ecuador

DOI:

https://doi.org/10.17268/agroind.sci.2025.03.07

Keywords:

Teak, Multicriteria analysis, Zooning, Meteorology, GIS

Abstract

The cultivation of Tectona grandis L. is of global importance due to its high commercial value, resistance and durability, being widely used in the luxury timber industry, especially in Asia, Africa and Latin America. This study analyzes teak cultivation behavior through climatic zoning and cartographic variables, with the objective of identifying potential areas for crop establishment and management. Through the processing of 20 years of meteorological data (2000 - 2021) from an INAMHI weather station and using CLIMWAT software, variables such as temperature, humidity, effective precipitation, solar radiation and evapotranspiration were analyzed, in addition GIS tools and multicriteria analysis were used to evaluate climatic, edaphic, land use and geomorphological factors that determine potential crop areas. The results show a minimum temperature between 22.7 °C and 25.8 °C and a maximum between 24.9 °C and 26.9 °C, indicating thermal stability favorable for teak, the average relative humidity is 76%, with peaks of 80% between August and November, which helps reduce crop water stress, in terms of water availability, an annual effective precipitation of 1549.4 mm was identified, concentrated in the rainy season (January to April), the average solar radiation of 14.2 MJ/m²/day is within the optimal range for photosynthesis and teak growth. Through multicriteria analysis, the territory was segregated into three suitability levels: high (20.22%), medium (71.89%) and low (7.89%), potential areas for cultivation have well-drained soils and moderate topography, while low suitability areas have steep slopes, low fertility soils or flood risk. The results provide a technical basis for sustainable teak plantation planning, allowing the development of soil conservation and water management strategies in restricted areas to ensure long-term crop viability.

References

Abel Palacios, H., Stefanello, A., García Gavilánez, M. S., Castro Demera, D. A., Garcia, M. V., Vásquez Castillo, W. A., Almeida Marcano, M. A., Samaniego Maigua, I. R., & Copetti, M. V. (2022). Relationship between the Fungal Incidence, Water Activity, Humidity, and Aflatoxin Content in Maize Samples from the Highlands and Coast of Ecuador. Toxins, 14(3), Article 3. https://doi.org/10.3390/toxins14030196

Acosta, M., & Corral, S. (2017). Multicriteria Decision Analysis and Participatory Decision Support Systems in Forest Management. Forests, 8(4), Article 4. https://doi.org/10.3390/f8040116

Aguilar, F. J., Nemmaoui, A., Peñalver, A., Rivas, J. R., & Aguilar, M. A. (2019). Developing Allometric Equations for Teak Plantations Located in the Coastal Region of Ecuador from Terrestrial Laser Scanning Data. Forests, 10(12), Article 12. https://doi.org/10.3390/f10121050

Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2

Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245–256. https://doi.org/10.1016/S0006-3207(02)00359-2

Asanok, L., Taweesuk, R., & Kamyo, T. (2024). Teak (Tectona grandis Linn. F) and Edaphic Factors Affecting the Regeneration of Woody Species and Their Functional Traits in Economic Forest Plantation, Northern Thailand. International Journal of Forestry Research, 2024(1), 2385142. https://doi.org/10.1155/2024/2385142

Asigbaase, M., Annan, M., Adusu, D., Abugre, S., Nsor, C. A., Kumi, S., & Acheamfour, S. A. (2024). Teak-Soil Interaction: Teak (Tectona grandis) Plantations Impact and are Impacted by Soil Properties and Fertility in Southwestern Ghana. Applied and Environmental Soil Science, 2024(1), 7931830. https://doi.org/10.1155/2024/7931830

Aumassanne, C. M., Gaspari, F. J., Beget, M. E., Fontanella, D., & Di Bella, C. (2023). Escenarios climáticos y de expansión agrícola: Efecto sobre el balance de agua en la cuenca del río Colorado, Argentina. Revista IDIA21, 3, no. 1.

Balana, B. B., Mathijs, E., & Muys, B. (2010). Assessing the sustainability of forest management: An application of multi-criteria decision analysis to community forests in northern Ethiopia. Journal of Environmental Management, 91(6), 1294–1304. https://doi.org/10.1016/j.jenvman.2010.02.005

Bourgoin, C., Betbeder, J., Couteron, P., Blanc, L., Dessard, H., Oszwald, J., Le Roux, R., Cornu, G., Reymondin, L., Mazzei, L., Sist, P., Läderach, P., & Gond, V. (2020). UAV-based canopy textures assess changes in forest structure from long-term degradation. Ecological Indicators, 115, 106386. https://doi.org/10.1016/j.ecolind.2020.106386

Camacho-Linton, A., Ramírez-Maldonado, H., de los Santos-Posadas, H. M., & Zamudio Sánchez, F. J. (2013). Tablas de rendimiento para teca (Tectona grandis L.) en el Estado de Campeche. Rev mexicana de ciencias forestales, 4, 92–101.

Cárcamo, A. M., & Ayuga, J. G. R. (2015). Análisis multitemporal mediante teledetección espacial y SIG del cambio de cobertura del suelo en el municipio de Danlí, El Paraíso, en los años 1987 -2011. Ciencias Espaciales, 8(2), Article 2. https://doi.org/10.5377/ce.v8i2.2081

Carmo, F. H. D. J. do, Latorraca, J. V. de F., Volpato, M., Santos, G. C. V. dos, Souza, P. P. de, & Takizawa, F. H. (2022). Climate variations affect the growth period of young Tectona grandis Linn F. in the Amazon. Acta Botanica Brasilica, 36, e2020abb0525. https://doi.org/10.1590/0102-33062020abb0525

Chandio, I. A., Matori, A. N. B., WanYusof, K. B., Talpur, M. A. H., Balogun, A.-L., & Lawal, D. U. (2013). GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arabian Journal of Geosciences, 6(8), 3059–3066. https://doi.org/10.1007/s12517-012-0568-8

Chowdhury, Md. Q., Rashid, A. Z. M., & Afrad, M. (2008). Growth performance of Teak (Tectona grandis Linn. F.) coppice under different regimes of canopy opening. Tropical Ecology.

Cristóbal, L. A., Leones, W. C., Macías, L. M., & Revelo, C. R. (2023). Estrategias de seguridad alimentaria para las exportaciones de frutas tropicales en el cantón Balzar-Ecuador. STRATEGOS - Revista Internacional de Estudios en Ciencias Administrativas, 3(1), Article 1. https://doi.org/10.53591/strategos.v3i1.1570

Delgado-Gutierrez, E., Canivell, J., Bienvenido-Huertas, D., & Hidalgo-Sánchez, F. M. (2024). Adaptive Comfort Potential in Different Climate Zones of Ecuador Considering Global Warming. Energies, 17(9), Article 9. https://doi.org/10.3390/en17092017

Edrisi, S. A., Singh, A., Dubey, P. K., & Abhilash, P. C. (2023). Tectona grandis L.f. Mediated restoration of marginal lands in Eastern Uttar Pradesh, North India. Land Degradation & Development, 34(4), 929–942. https://doi.org/10.1002/ldr.4506

Escanilla-Minchel, R., Alcayaga, H., Soto-Alvarez, M., Kinnard, C., & Urrutia, R. (2020). Evaluation of the Impact of Climate Change on Runoff Generation in an Andean Glacier Watershed. Water, 12(12), Article 12. https://doi.org/10.3390/w12123547

Gabr, M. Els. (2022). Modelling net irrigation water requirements using FAO-CROPWAT 8.0 and CLIMWAT 2.0: A case study of Tina Plain and East South ElKantara regions, North Sinai, Egypt. Archives of Agronomy and Soil Science, 68(10), 1322–1337. https://doi.org/10.1080/03650340.2021.1892650

Gaddikeri, V., Rajput, J., Dimple, Jatav, M. S., Kumari, A., Rana, L., Rai, A., & Gangwar, A. (2024). Estimating crop water requirement in Madhya Pradesh’s agro-climatic regions: A CROPWAT and CLIMWAT software case study. Environment Conservation Journal, 25(1), 308–326. https://doi.org/10.36953/ECJ.26022353

Hannich, J. T., Entchev, E. V., Mende, F., Boytchev, H., Martin, R., Zagoriy, V., Theumer, G., Riezman, I., Riezman, H., Knölker, H.-J., & Kurzchalia, T. V. (2009). Methylation of the Sterol Nucleus by STRM-1 Regulates Dauer Larva Formation in Caenorhabditis elegans. Developmental Cell, 16(6), 833–843. https://doi.org/10.1016/j.devcel.2009.04.012

Huang, G., Liang, K., Zhou, Z., Yang, G., & Muralidharan, E. M. (2019a). Variation in Photosynthetic Traits and Correlation with Growth in Teak (Tectona grandis Linn.) Clones. Forests, 10(1), Article 1. https://doi.org/10.3390/f10010044

Huang, G., Liang, K., Zhou, Z., Yang, G., & Muralidharan, E. M. (2019b). Variation in Photosynthetic Traits and Correlation with Growth in Teak (Tectona grandis Linn.) Clones. Forests, 10(1), Article 1. https://doi.org/10.3390/f10010044

Imaya, A., Vongkhamho, S., & Sikhot, P. (2020, March 19). Soil suitability map for planted teak (Tectona grandis L.f.) stand growth in the mountainous area of northern Lao People’s Democratic Republic.

Luo, W., Chen, M., Kang, Y., Li, W., Li, D., Cui, Y., Khan, S., & Luo, Y. (2022). Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agricultural Water Management, 260, 107285. https://doi.org/10.1016/j.agwat.2021.107285

Matsunaga, H., Matsuo, N., Nakai, T., Yoshifuji, N., Tanaka, N., Tanaka, K., & Tantasirin, C. (2021). Absorption and emission of water vapor from the bark of teak (Tectona grandis), a deciduous tree, in a tropical region during the dry season. Hydrological Research Letters, 15(3), 58–63. https://doi.org/10.3178/hrl.15.58

Mendoza-Cariño, M., Bautista-Olivas, A. L., Mendoza-Cariño, D., Ortiz-Solorio, C. A., Duarte-Tagles, H., Cruz-Flores, G., Mendoza-Cariño, M., Bautista-Olivas, A. L., Mendoza-Cariño, D., Ortiz-Solorio, C. A., Duarte-Tagles, H., & Cruz-Flores, G. (2023). Agroclimatic zoning of the state of Nayarit, Mexico. Atmósfera, 36(1), 123–142. https://doi.org/10.20937/atm.53002

Ministerio del Ambiente del Ecuador (MAE), & Sistema Único de Información Ambiental (SUIA). (2018). Mapa Interactivo Ambiental [Map]. http://mapainteractivo.ambiente.gob.ec/portal/

Nieto-Rodríguez, J. E., Hernández-Delgado, S., Motte-Darricau, E., & Mayek-Pérez, N. (2014). Análisis de la diversidad genética del germoplasma de teca (Tectona grandis L. f.) en Ecuador. Revista mexicana de ciencias forestales, 5(21), 108–121.

Paz, C. de la, Dominguez, J., & Perez, M. E. (2013). GIS Methodology for Location of Biomass Power Plants Via Multi -Criteria Evaluation and Network Analysis. Location-Allocation Models for Forest Biomass Use; Metodologia SIG para la Localizacion de Centrales de Biomasa mediante Evaluacion Multicriterio y Analisis de Redes. Modelos de Localizacion-Asignacion para el Aprovechamiento de Biomasa Forestal. https://www.osti.gov/etdeweb/biblio/22059892

Pokhrel, B., & Pokhrel, R. (2019). Assessing Growth Performance of Tectona Grandis in Nepal. International Journal of Advanced Research in Botany, 5(1), 25–33.

QGIS Development Team. (2024). QGIS Geographic Information System (Version 3.24.5) [Computer software]. https://www.qgis.org

Tan, M. L., & Yang, X. (2020). Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. Journal of Hydrology, 584, 124660. https://doi.org/10.1016/j.jhydrol.2020.124660

Tsujimoto, M., Kajikawa, Y., Tomita, J., & Matsumoto, Y. (2017). A review of the ecosystem concept—Towards coherent ecosystem design. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2017.06.032

Upadhyay, K. K., Shah, S. K., Roy, A., & Tripathi, S. K. (2021). Dendroclimatology of teak indicates prevailing climatic conditions of tropical moist forests in India. Ecological Indicators, 129, 107888. https://doi.org/10.1016/j.ecolind.2021.107888

Uribe Villavicencio, D. (2011). Análisis multicriterio para la identificación de áreas prioritarias de restauración del paisaje forestal en la Mixteca Alta, oaxaqueña. http://literatura.ciidiroaxaca.ipn.mx:8080/xmlui/handle/LITER_CIIDIROAX/154

Velasteguí, T. F., Guerrero, F. C., & Gutiérrez, R. C. (2010). Plagas y enfermedades en plantaciones de teca (Tectona grandis L.) en la zona de Balzar, provincia del Guayas. Ciencia y Tecnología, 3(1), Article 1. https://doi.org/10.18779/cyt.v3i1.88

Vera Avilés, D. F., LiuBa Delfini, G., Godoy Montiel, L., Díaz Ocampo, E., Sabando Ávila, F. A., Garcés Fiallos, F. R., & Meza Bone, G. Á. (2013). Análisis de estabilidad para el rendimiento de híbridos de maíz (Zea mays) en la Región Central del Litoral Ecuatoriano. Scientia Agropecuaria, 4(3), 211–218.

Verdesoto, C. A. C., Carvajal, J. M. O., Rodriguez, M. P. R., Gonzalez, A. J., & Ponce, Y. R. B. (2021). Valoración dasométrica de una plantación de tectona grandis l. F. En el cantón Balzar, provincia del Guayas. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 5(3), Article 3. https://doi.org/10.47230/unesum-ciencias.v5.n3.2021.351

Published

2025-09-29

How to Cite

Yánez-Cajo, D., Villamar-Torres, . R. O., Vásconez Montufar, G., Romero Román, M. E., & Quiñonez-Campos, Érika. (2025). Agroclimatic zoning and multicriteria analysis of teak (Tectona grandis L.) in the Central Coastal region of Ecuador . Agroindustrial Science, 14(3), 263-272. https://doi.org/10.17268/agroind.sci.2025.03.07

Issue

Section

Artículos de investigación