Eficiencia en la utilización de fósforo en maíces nativos cultivados en Andosoles del Centro de México

Authors

  • Jeannette S. Bayuelo Jiménez Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Tarímbaro. Michoacán. México. https://orcid.org/0000-0002-6253-4126

DOI:

https://doi.org/10.17268/agroind.sci.2025.03.02

Keywords:

Zea mays, fósforo, patrón de acumulación, partición, removilización

Abstract

La eficiencia en el uso de fósforo (P) está regulada por la forma en que la planta adquiere y utiliza el recurso en condiciones restrictivas. Se evaluó el proceso de acumulación, partición y removilización de materia seca y P en maíz y su relación con la eficiencia en la utilización de P (EUtP). Se cultivaron seis genotipos de maíz de maduración precoz y tardía en un suelo ácido, con una reducida (25 kg P2O5 ha-1) (BP) y adecuada (50 kg P2O5 ha-1) (AP) fertilización fosforada. El estudio identificó variabilidad genotípica para EUtP. Los genotipos de maduración tardía presentaron alta acumulación de materia seca y P en órganos vegetativos, pero una menor removilización de asimilados a la semilla en desarrollo, en BP. Al contrario, los genotipos precoces mantuvieron una constante acumulación y partición de materia seca entre órganos y alta removilización de P hacia la semilla, en BP y AP. Independientemente de la dosis, los genotipos precoces removieron mayor biomasa (22 %) y P (21 %) del vástago a la semilla en comparación con los tardíos (18 y 15 %). Una óptima partición de materia seca en la planta y una mayor partición de P hacia tejidos jóvenes y activos incrementan la EUtP, en suelos ácidos. 

References

Abbas M., Shah, J. A., Irfan, M., & Memon, Y. (2018). Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency. Journal of Plant Nutrition, 41, 1512-1523. https://doi.org/10.1080/01904167.2018.1458871

Assuero S. G., Mollier, A., & Pellerin, S. (2004). The decrease in growth of phosphorus-deficient maize leaves is related to lower cell production. Plant Cell & Environment, 27, 887-8985. https://doi.org/10.1111/j.1365-3040.2004.01194.x

Bayuelo-Jiménez, J. S., & Ochoa-Cadavid, I. (2018). Interacción Genotipo x Ambiente para Eficiencia en el Uso de Fósforo en Maíz Nativo de la Meseta Purhépecha. Revista Fitotecnia Mexicana, 41(1), 39-47. https://doi.org/10.35196/rfm.2018.1.39-47

Barman, A., Pooniya, V., Zhiipao, R. R., Biswakarma, N., Kumar, D., Das, K., ... & Dutta, S. (2025). Pre-and post-anthesis dry matter and nutrient accumulation, partitioning, remobilization and crop productivity of maize under the long-term integrated crop management practices. European Journal of Agronomy, 164, 127527. https://doi.org/10.1016/j.eja.2025.127527

Brindabran P. S., Dimkpa., C. O., & Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56, 299-317. https://doi.org/10.1007/s00374-019-01430-2

Brown H. E., Hunth., N. I., Holzworth, D. P., Teixeira., E. I. Wang., R. F. Zyskowski, E., & Zheng, B. (2019). A genetic approach to modelling, allocation and redistribution of biomass to and from plant organs. in silico Plants, 1(1). diy004, https://doi.org/10.1093/insilicoplants/diy004

Cong W. F., Suriyagoda., L. D. B., & Lambers, H. (2020). Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends in Plant Science, 25, 967-975. https://doi.org/10.1016/j.tplants.2020.04.013

El Mazlouzi, M., Morel, C., Robert, T., Chesserom, C., Salon, C., Cornu, J., & Mollier, A. (2022). The dynamics of phosphorus uptake and remobilization during the grain development period in durum wheat plants. Plants, 11(8). 1006. https://doi.org/10.3390/plants11081006

Fan, P., Ming, B., Evers, J. B., Li, Y., Li, S., Xie, R., & Anten, N. P. (2023). Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Research, 297, 108927. https://doi.org/ 10.1016/j.fcr.2023.108927

Fageria N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition, 31, 1121-1157. https://doi.org/10.1080/01904160802116068

Guo, H. L., Tian, M. Z., Ri, X., & Chen, Y. F. (2024). Phosphorus acquisition, translocation, and redistribution in maize. Journal of Genetics and Genomics, 52, 287-296. https://doi.org/10.1016/j.jgg.2024.09.018

Instituto Nacional de Estadística, Geografía e Informática (INEGI). (2017). Anuario estadístico y geográfico de Michoacán de Ocampo. México: INEGI.

Irfan M., Aziz, T., Maqsood, M., Bilal, H. M., Siddique, K. H. M., & Xu, M (2020). Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation patterns. Scientific Reports, 10, 4278. https://doi.org/10.1038/s41598-020-61147-3

Li, R., Hu, D., Ren, H., Yang, Q., Dong, S., Zhang, J., … & Liu, P. (2022). How delaying post-silking senescence in lower leaves of maize plants increases carbon and nitrogen accumulation and grain yield. J. Crop Science, 10(3), 853–863. https://doi.org/10.1016/j.cj.2021.11.006.

Mo, Q., Li, Z. A., Sayer, E. J., Lambers, H., Li, Y., Zou, B. I., … & Wang, F. (2019). Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. Functional Ecology, 33(3), 503-513. https://doi.org/10.1111/1365-2435.13252

Murphy J., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytical Chemical Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5

Nadeem M., Mollier, A., Morel, C., Vives, A., Prud´Homme, L., & Pellerin, S. (2011). Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant and Soil, 346, 231-244, https://doi.org/10.1007/s11104-011-0814y

Raboy, V. (2020). Low phytic acid crops: observations based on four decades of research. Plants-Basel, 53, 27-36. https://doi.org/10.3390/plants9020140

Salazar-Mejía, S.G., & Bayuelo-Jiménez, J.S. (2024). Estrategia para optimizer la reserva de fósforo en el suelo: Un estudio basado en la diversidad de maíces nativos de México y selección de genotipos. Scientia Agropecuaria, 15(3), 349-359. https://doi.org/10.17268/sci.agropecu.2024.026

SAS. (2011). SAS User's Guide: Statistics. SAS. Institute, Inc. Cary, North Carolina, USA.

Schneider K. D., Martens, J. R. T., Zvomuya, F., Reid, D. K., Fraser, T. D., Lynch, D. H., O´Halloran, I., & Wilson, H. F. (2019). Options for improved phosphorus cycling and use in agriculture at the field and regional scales. Journal of Environmental Quality, 48, 1247-1264. https://doi.org/10.2134/jeq2019.02.0070

Snapp, S. S. & Lynch, J. P. (1996). Phosphorus distribution and remobilization in bean plants as influenced by phosphorus nutrition. Crop Science, 36, 929-935. https://doi.org/10.2135/cropsci1996.0011183X003600040019x

Soil Survey Staff. (1999). Soil Taxonomy: a basic system of soil classification for making and interpreting soil survey. Agriculture Handbook 436. 2nd edition. Natural Resources Conservation Service. United Department of Agriculture. Washington, DC.

Wang, F., Cui, P. J., Tian, Y., Huang, Y., Wang, H. F., Liu, F., & Chen, Y. F. (2020). Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. Plant Biotechnology Journal, 18, 2406e2419. https://doi.org/10.1111/pbi.13414

Wang, C., & Ning, P. (2019). Post-silking phosphorus recycling and carbon partitioning in maize under low and high phosphorus inputs and their effects on grain yield. Frontiers in Plant Science, 10, 784. https://doi.org/10.3389/fpls.2019.00784

Xie, X., Li, R., Zhang, Y., Shen, S., & Bao, Y. (2018). Effect of elevated [CO2] on assimilation, allocation of nitrogen and phosphorus by maize (Zea mays L.) Communications in Soil Science and Plant Analysis, 49, 1032-1044. https://doi.org/10.1080/00103624.2018.1448413

Yuan, M., Wu, G., Wang, J., Liu, C., Hu, Y., Hu, R., ... & Sun, Y. (2024). Blended controlled-release nitrogen fertilizer increases rice post-anthesis nitrogen accumulation, translocation and nitrogen-use efficiency. Frontiers in Plant Science, 15, 1354384. https://doi.org/10.3389/fpls.2024.1354384.

Zhang W. H. Li., Zhang, J., Shen, J., Brown, H., & Wang, E. (2022). Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in a maize cultivar. The Crop Journal, 10, 254-261. https://doi.org/10.1016/j.cj.2021.02.014

Zou, T., Zhang, X., & Davidson, E.A. (2022). Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81e87. https://doi.org/10.1038/s41586-022-05220-z

Published

2025-09-29

How to Cite

Bayuelo Jiménez, J. S. (2025). Eficiencia en la utilización de fósforo en maíces nativos cultivados en Andosoles del Centro de México . Agroindustrial Science, 14(3), 209-217. https://doi.org/10.17268/agroind.sci.2025.03.02

Issue

Section

Artículos de investigación