Increase in proline by the application of the biostimuant CBX-103 improves the growth of Arabidopsis thaliana Col 0 under salt stress conditions
DOI:
https://doi.org/10.17268/agroind.sci.2024.01.04Keywords:
Arabidopsis thaliana Col 0, bioestimulant CBX-103, carboxylic acids, proline, salt stressAbstract
Agriculture faces new, increasingly complicated challenges in the face of a constantly changing environment that causes different types of stress in crops, one of them being salinity. Numerous investigations have been carried out to understand the effect of salt stress on the physiology of plants, as well as different ways of dealing with it and creating tolerance and/or resistance so that the productivity of crops is not affected. Among these alternatives we find biostimulants. The biostimulant CBX-103 is composed of carboxylic acids, succinic acids, oligogalacturonides, among others, which are obtained through a controlled enzymatic fermentation of the plant extract of Saccharum officinarum L. In the present study it is demonstrated that foliar applications of the biostimulant CBX- 103 in Arabidopsis thaliana Col 0 plants grown under salt stress increase leaf proline content, significantly reducing the harmful effects of stress, which is demonstrated at a biometric level and regulating growth states. A pathway in the energy regulation of plants is proposed as a mode of action due to the increase in the accumulation of proline obtained and the effect of its components.
References
Acosta, D. L., Menéndez, D. C., & Rodríguez, A. F. (2018). Los oligogalacturónidos en el crecimiento y desarrollo de las plantas. Cultivos Tropicales, 39(2), 127-134.
Almanza-Merchán, P. J., Tovar-León, Y. P., & Velandia-Díaz, J. D. (2016). Comportamiento de la biomasa y de las tasas de crecimiento de dos variedades de lulo (Solanum quitoense Lam.) en Pachavita, Boyacá. Ciencia y Agricultura, 13(1), 67-76.
Alharby, H .F., Al-Zahrani, H. S., Hakeem, K. R., Alsamadany, H., Desoky, E.-S. M.; Rady, M.M. (2021). Silymarin-Enriched Biostimulant Foliar Application Minimizes the Toxicity of Cadmium in Maize by Suppressing Oxidative Stress and Elevating Antioxidant Gene Expression. Biomolecules, 11, 465. https://doi.org/10.3390/biom11030465
Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2019). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. Protoplasma, 256, 449-457. https://doi.org/10.1007/s00709-018-1306-1
Bates, L. S., Walden, R. P., & Tear, G. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205–210. https://doi.org/10.1007/BF00018060
Bedoya-Perales N., Maus D., Neimaier A., Escobedo-Pacheco E., Pumi G. (2023). Assessment of the variation of heavy metals and pesticide residues in native and modern potato (Solanum tuberosum L.) cultivars grown at different altitudes in a typical mining region in Peru. Toxicology Reports, 11, 23-34. https://doi.org/10.1016/j.toxrep.2023.06.005
Bertrand, H., Nalin, R., Bally, R., & Cleyet-Marel, J. C. (2001). Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biology and fertility of soils, 33, 152-156. https://doi.org/10.1007/s003740000305
Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., & Görlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell, 13(7), 1499–1510. https://doi.org/10.1105/tpc.13.7.1499
Costales, D., Martínez, L., & Núñez, M. (2007). Efecto del tratamiento de semillas con una mezcla de oligogalacturónidos sobre el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Cultivos Tropicales, 28(1), 85-91.
Dagar, J. C., Yadav, R. K., & Sharma, P. C. (2019). Research Developments in Saline Agriculture. Salinity Tolerance Indicators. 10.1007/978-981-13-5832-6 (Chapter 5), 155–201. https://doi.org/10.1007/978-981-13-5832-6_5
Desoky, E. -S. M., Elrys, A. S., Mansour, E., Eid, R. S. M., Selem, E., Rady, M. M., Ali, E. F., Mersal, G. A. M., & Semida, W. M. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288, 110340. https://doi.org/10.1016/j.scienta.2021.110340
Dwiningsih, Y., Kumar, A., Thomas, J., Ruiz, C., Alkahtani, J., Baisakh, N., & Pereira, A. (2021). Quantitative trait loci and candidate gene identification for chlorophyll content in RIL rice population under drought conditions. Indonesian Journal of Natural Pigments, 3(2), 54-64. http://doi.org/10.33479/ijnp.2021.03.2.54
Figueroa, L., & Neaman, A. (2023). Salinos, pero ácidos: una extraña combinación en suelos del valle de Lluta en el norte de Chile. Idesia (Arica), 41(1), 133-137. https://dx.doi.org/10.4067/S0718-34292023000100133
Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (2017). Physiology of crop plants. Scientific publishers.
Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), 227-239. https://doi.org/10.1111/plb.13363
Gupta, A., Rai, S., Bano, A., Khanam, A., Sharma, S., Pathak, N. (2021). Comparative evaluation of different salt tolerant plant growth promoting bacterial isolates in mitigating the induced adverse effect of salinity in Pisum sativum. Biointerface Research in Applied Chemistry, 11(5), 13141–13154. https://doi.org/10.33263/BRIAC115.1314113154
Hadavi, E., & Ghazijahani, N. (2022). Simple Organic Acids as Plant Biostimulants. In Biostimulants: Exploring Sources and Applications. Singapore: Springer Nature Singapore, 71–105. https://doi.org/10.1007/978-981-16-7080-0_4
Hameed, A., Ahmed, M. Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., & Nielsen, B. L. (2021). Effects of salinity stress on chloroplast structure and function. Cells, 10(8), 2023. https://doi.org/10.3390/cells10082023
Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T. H., Hack, H., & Stauss, R. (1997). Use of the extended BBCH scale—general for the descriptions of the growth stages of mono, and dicotyledonous weed species. Weed research, 37(6), 433-441. https://doi.org/10.1046/j.1365-3180.1997.d01-70.x
Hunt, R. (1982). Plant growth curves. The functional approach to plant growth analysis. Edward Arnold Ltd.
Jiménez-Vázquez, K. R., García-Cárdenas, E., Barrera-Ortiz, S., Ortiz-Castro, R., Ruiz-Herrera, L. F., Ramos-Acosta, B. P., Coria-Arellano, J. L., Sáenz-Mata, J., & López-Bucio, J. (2020). The plant beneficial Rhizobacterium achromobacter sp. 5B1 influences root development through auxin signaling and redistribution. Plant Journal, 103(5). https://doi.org/10.1111/tpj.14853
Lynch J. (1995). Root architecture and plant productivity. Plant Physiol.,109(1), 7-13. https://doi.org/10.1104/pp.109.1.7
Mayén-Villa, R. I., Morales-Rosales, E. J., Morales-Morales, E. J., & López-Sandoval, J. A. (2023). Rendimiento de tomate (Solanum lycopersicum) en función de fosfito de potasio como fertilizante foliar. Ecosistemas y recursos agropecuarios, 10(2). https://doi.org/10.19136/era.a10n2.3543
Monshausen, G. B., & Gilroy, S. (2009). The exploring root–root growth responses to local environmental conditions. Curr Opin Plant Biol., 12, 766-772. https://doi.org/10.1016/j.pbi.2009.08.002
Morton, M. J. L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S., & Tester, M. (2019). Salt stress under the scalpel – Dissecting the genetics of salt tolerance. Plant J., 97, 148–163. https://doi.org/10.1111/tpj.14189
Ordoñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137-149. https://doi.org/10.1111/j.1466-8238.2008.00441.x
Orsini, F., Pennisi, G., Mancarella, S., Al Nayef, M., Sanoubar, R., Nicola, S., & Gianquinto, G. (2018). Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline. Sci. Hortic., 233, 283–293. https://doi.org/10.1111/j.1466-8238.2008.00441.x
Passioura, J. B. (2002). Environmental biology and crop improvement. Functional Plant Biology, 29(5), 537-546. https://doi.org/10.1071/FP02020
Pereira, E. G., Amaral, M. B., Bucher, C. A., Santos, L. A., Fernandes, M. S., & Rossetto, C. A. V. (2021). Proline osmopriming improves the root architecture, nitrogen content and growth of rice seedlings. Biocatalysis and Agricultural Biotechnology, 33,101998. https://doi.org/10.1016/j.bcab.2021.101998
Poorter, H. (1989). Plant growth analysis: towards a synthesis of the classical and the functional approach. Physiologia Plantarum, 75(3), 237-244. https://doi.org/10.1111/j.1399-3054.1989.tb06175.x
Poorter, H., & Garnier, E. (1996). Plant growth analysis: an evaluation of experimental design and computational methods. Journal of Experimental Botany, 47(9), 1343-1351. https://doi.org/10.1093/jxb/47.9.1343
Poorter, H., & Sack, L. (2012). Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science, 3(259), 1-10. https://doi.org/10.3389/fpls.2012.00259
Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determi-nation of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll II standards by atomic absorption spectroscopy. Biochim Biophys Acta, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
Radford, P. (1967). Growth analysis formulae. Their use and abuse. Crop Sci, 7(3), 171 - 175. https://doi.org/10.2135/cropsci1967.0011183X000700030001x
Reyes-Pérez, J. J., Ramos-Remache, R. A., Llerena-Ramos, L. T., Ramírez-Arrebato, M. Á., & Falcón-Rodríguez, A. B. (2021). Potentialities of oligogalacturonides and chitosaccharides on plant rooting. Terra Latinoamericana, 39.
Rolly, N. K., Imran, Q. M., Lee, I. J., & Yun, B. W. (2020). Salinity stress‐mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. International Journal of Molecular Sciences, 21(5), 1–17. https://doi.org/10.3390/ijms21051726
Sahi, C., Singh, A., & Kumar, K. (2006). Salt stress response in rice: genetics, molecular biology and comparative genomics. Funct. Integr. Genomics, 6, 263–284. https://doi.org/10.1007/s10142-006-0032-5
Scaglia, B., Pognani, M., & Adani, F. (2017). The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property. Science of The Total Environment, 589, 36-45, https://doi.org/10.1016/j.scitotenv.2017.02.223
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Springer, Cham., 43–53. https://doi.org/10.1007/978-3-319-96190-3_2
Sekhar, P. N., Amrutha, R. N., Sangam, S., Verma, D. P. S., & Kishor, P. K. (2007). Biochemical characterization, homology modeling and docking studies of ornithine δ-aminotransferase—an important enzyme in proline biosynthesis of plants. Journal of Molecular Graphics and Modelling, 26(4), 709-719. https://doi.org/10.1016/j.jmgm.2007.04.006
Singh, R. P., Prakash, S., Bhatia, R., Negi, M., Singh, J., Bishnoi, M., & Kondepudi, K. K. (2020). Generation of structurally diverse pectin oligosaccharides having prebiotic attributes. Food Hydrocolloids, 108, 105988. https://doi.org/10.1016/j.foodhyd.2020.105988
Sivakumar, M. V. K., & Shaw, R. H. (1978). Methods of growth analysis in field-grown soya beans (Glicine max L.). Merril. Ann. Bot., 42(1), 213 - 222. https://doi.org/10.1093/oxfordjournals.aob.a085442
Souza, C. R., de Mello, A., Antunes, P., de Araújo Bitencourt, J., Sampaio, I., Carneiro, P. L. (2017). Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian coastal basins as revealed by DNA analyses. Hydrobiologia, 809, 309-321. https://doi.org/10.1007/s10750-017-3482-y
Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods Enzymol., 428, 419-438. https://doi.org/10.1016/S0076-6879(07)28024-3
Uddin, Md., & Juraimi, A. (2013). Salinity Tolerance Turfgrass: History and Prospects. The Scientific World Journal. 409413. https://doi.org/10.1155/2013/409413
Wani, A., Ahmad, A., Hayat, S., Tahir, I. (2016). Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars?. Environ. Sci. Pollut. Res., 23, 13413–13423. https://doi.org/10.1007/s11356-016-6533-4
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt stress responses. New Phytol., 217, 523–539. https://doi.org/10.1111/nph.14920
Yildirim, E., Turan, M., & Donmez, M. F. (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth: Promoting rhizobacteria. Romanian Biotechnological Letters, 86(3), 52-62.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fresia Mejía, Gustavo Sandoval, Juan Lucar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores conservan sus derechos de autor sin restricciones.