Uso del ultrasonido en el tratamiento de leche y su efecto en microorganismos patógenos
DOI:
https://doi.org/10.17268/agroind.sci.2024.03.09Palabras clave:
Ultrasonido, tratamiento, ultrasonicado, leche, microorganismos patógenosResumen
El uso de ultrasonidos como nueva tecnología de procesamiento de leche ha demostrado ser un método innovador y prometedor en la industria láctea. El propósito de esta revisión es (i) analizar el efecto del ultrasonido, especialmente el método termosónico, en la reducción de patógenos en la leche, (ii) evaluar su efectividad y ventajas sobre los métodos tradicionales de pasteurización, y (iii) su potencial para explorar aplicaciones en el procesamiento de lácteos. Se describen detalladamente los principios básicos y aplicaciones del ultrasonido, destacando su capacidad para mejorar la calidad microbiológica de la leche sin comprometer sus propiedades sensoriales y nutricionales.
Se concluye que el ultrasonido es una tecnología con efecto positivo y prometedor en la optimización de los procesos de procesamiento de leche. Su uso permite minimizar las consecuencias negativas de los métodos tradicionales de pasteurización, aumentando así la calidad y seguridad de los productos lácteos. Se recomienda realizar más investigaciones y pruebas a escala industrial para confirmar estos hallazgos y explorar nuevas aplicaciones del sonido térmico en otros sectores de la industria alimentaria.
Citas
Acevedo, D., Rodríguez, A., & Fernández, A. (2010). Efecto de las variables de proceso sobre la cinética de acidificación, la viabilidad y la sinéresis del suero costeño colombiano. Información Tecnológica, 21(2), 29–36.
Anjitha Jacob, I.P. Sudagar, Pandiselvam, R., P. Rajkumar, & M. Rajavel. (2022). Optimization of ultrasound processing parameters for preservation of matured coconut water using a central composite design. Qual. Assur. Saf. Crops Foods, 14(SP1), 33–41. https://doi.org/10.15586/qas.v14iSP1.1145
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/J.JOI.2017.08.007
Astráin-Redín, L., Skipnes, D., Cebrián, G., Álvarez-Lanzarote, I., & Rode, T. M. (2023). Effect of the Application of Ultrasound to Homogenize Milk and the Subsequent Pasteurization by Pulsed Electric Field, High Hydrostatic Pressure, and Microwaves. Foods, 12(7), 1457. https://doi.org/10.3390/foods12071457
Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/QSS_A_00019
Calderón, J., Marroquin, A., Luviano, L., Maqueda, V., Marín, E., & Calderón, A. (2019). Sonido, ultrasonido y cavitación. Latin-American Journal of Physics Education, 13(4), 11.
Chen, Y., Yuan, C., Yang, T., Song, H., Zhan, K., & Zhao, G. (2024). Effects of Bile Acid Supplementation on Lactation Performance, Nutrient Intake, Antioxidative Status, and Serum Biochemistry in Mid-Lactation Dairy Cows. Animals, 14(2). https://doi.org/10.3390/ani14020290
Cho, E. R., & Kang, D. H. (2024). Desarrollo e investigación de calentamiento óhmico pulsado asistido por ultrasonidos para la inactivación de patógenos transmitidos por los alimentos en leche con diferentes contenidos de grasa. Food Research International, 179, 113978. https://doi.org/10.1016/j.foodres.2024.113978
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/J.JBUSRES.2021.04.070
Ge, X., Wu, Z., Manzoli, M., Bonelli, B., Mantegna, S., Kunz, W., & Cravotto, G. (2021). Adsorptive decontamination of antibiotic-spiked water and milk using commercial and modified activated carbons. Journal of Environmental Chemical Engineering, 9(4), 105544. https://doi.org/10.1016/j.jece.2021.105544
Gregersen, S. B., Wiking, L., & Hammershøj, M. (2019). Acceleration of acid gel formation by high intensity ultrasound is linked to whey protein denaturation and formation of functional milk fat globule-protein complexes. Journal of Food Engineering, 254, 17–24. https://doi.org/10.1016/j.jfoodeng.2019.03.004
Iorio, M. C., Bevilacqua, A., Corbo, M. R., Campaniello, D., Sinigaglia, M., & Altieri, C. (2019). A case study on the use of ultrasound for the inhibition of Escherichia coli O157:H7 and Listeria monocytogenes in almond milk. Ultrasonics Sonochemistry, 52, 477–483. https://doi.org/10.1016/J.ULTSONCH.2018.12.026
Juraga, E., Vukušić Pavičić, T., Gajdoš Kljusurić, J., Brnčić, M., Juraga, T., & Herceg, Z. (2021). Properties of milk treated with high-power ultrasound and bactofugation. Food Technology and Biotechnology, 59(1), 92–102.
Lavrentev, F. V, Baranovskaia, D. A., Shiriaev, V. A., Fomicheva, D. A., Iatsenko, V. A., Ivanov, M. S., Ashikhmina, M. S., Morozova, O. V, & Iakovchenko, N. V. (2024). Influence of pre‐treatment methods on quality indicators and mineral composition of plant milk from different sources of raw materials. J Sci Food Agric, 104(2), 967–978. https://doi.org/10.1002/jsfa.12992
Lázaro Nolasco, D. R., & Villanueva Valentin, L. M. (2021). Efecto del termosonicado en la vida útil de la pulpa de granadilla (Passiflora ligularis) y tumbo serrano (Passiflora mollissima). https://repositorio.unheval.edu.pe/handle/20.500.13080/7114
López, B. Y. G., & García, P. A. M. (2010). Evaluación del tratamiento térmico de las arvejas enlatadas (pisum sativum) en salmuera. Publicaciones e Investigación, 4, 129–143.
Mayta-Hancco, J., Trujillo, A.-J., Juan, B., Mayta-Hancco, J., Trujillo, A.-J., & Juan, B. (2020). La homogeneización a ultra-alta presión (UHPH): Efectos en la leche y aplicaciones en la fabricación de quesos. Revista de Investigaciones Veterinarias Del Perú, 31(2). https://doi.org/10.15381/rivep.v31i2.17934
Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de La Información, 29(1), 1699–2407. https://doi.org/10.3145/EPI.2020.ENE.03
Mudgil, P., Alkaabi, A., & Maqsood, S. (2022). Ultrasonication as a novel processing alternative to pasteurization for camel milk: Effects on microbial load, protein profile, and bioactive properties. Journal of Dairy Science, 105(8), 6548–6562. https://doi.org/10.3168/JDS.2021-20979
Nascimento, L. G. L., Queiroz, L. S., Petersen, H. O., Marie, R., Silva, N. F. N., Mohammadifar, M. A., De Sá Peixoto Júnior, P. P., Delaplace, G., De Carvalho, A. F., & Casanova, F. (2023). High-intensity ultrasound treatment on casein: Pea mixed systems: Effect on gelling properties. Food Chemistry, 422, 136178. https://doi.org/10.1016/j.foodchem.2023.136178
Niamah, A. K. (2019). Efectos del tratamiento con ultrasonidos (baja frecuencia) sobre el crecimiento de bacterias probióticas en leche fermentada. El Futuro de Los Alimentos: Revista Sobre Alimentación, Agricultura y Sociedad, 7(2), 1–8. https://doi.org/10.17170/kobra-20190709592
Nina, D., Olga, K., Elena, V., Svetlana, K., Kermen, M., Arina, O., & Anandan, S. (2023). Influence of acoustic cavitation on physico-chemical, organoleptic indicators and microstructure of Adyghe cheese produced from cow and goat milk. Ultrasonics Sonochemistry, 98, 106493. https://doi.org/10.1016/j.ultsonch.2023.106493
Ortiz Rodiles, J. C. (2020). Elaboración y caracterización de geles mixtos de grenetina tipo B y proteína concentrada de suero pretratada por ultrasonido de alta potencia [Benemérita Universidad Autónoma de Puebla].
Peralta, G. H., Bürgi, M. D. M., Martínez, L. J., Albarracín, V. H., Wolf, I. V., Perez, A. A., Santiago, L. G., Hynes, E. R., & Bergamini, C. V. (2022). Influence of three ultrasound treatments on viability, culturability, cell architecture, enzymatic activity and metabolic potential of Lacticaseibacillus paracasei 90. International Dairy Journal, 131, 105371. https://doi.org/10.1016/j.idairyj.2022.105371
Şen, L., & Okur, S. (2023). Effect of hazelnut type, hydrocolloid concentrations and ultrasound applications on physicochemical and sensory characteristics of hazelnut-based milks. Food Chemistry, 402, 134288. https://doi.org/10.1016/j.foodchem.2022.134288
Sergeev, A., Motyakin, M., Barashkova, I., Zaborova, V., Krasulya, O., & Yusof, N. S. M. (2021). EPR and NMR study of molecular components mobility and organization in goat milk under ultrasound treatment. Ultrasonics Sonochemistry, 77, 105673. https://doi.org/10.1016/j.ultsonch.2021.105673
Soares, A. de S., Leite Júnior, B. R. de C., Tribst, A. A. L., Augusto, P. E. D., & Ramos, A. M. (2020). Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT, 130, 109636. https://doi.org/10.1016/J.LWT.2020.109636
Sun, Y., Roos, Y. H., & Miao, S. (2024). Comparative study of interfacial properties and thermal behaviour of milk fat globules and membrane prepared from ultrasonicated bovine milk. Ultrasonics Sonochemistry, 102, 106755. https://doi.org/10.1016/j.ultsonch.2024.106755
Thi Hong Bui, A., Cozzolino, D., Zisu, B., & Chandrapala, J. (2020). Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products – a review. Journal of Dairy Research, 87(4), 501–512. https://doi.org/10.1017/S0022029920001107
Wang, T., Wang, Y., Zou, L., Liu, J., Shao, Y., & Tu, Z. (2023). Effect of Ultrasound-Assisted Luteolin Treatment on the Structure and Allergenicity of β-Lactoglobulin. Shipin Kexue/Food Science, 44(11), 48–56. https://doi.org/10.7506/spkx1002-6630-20220722-261
Wu, J., Chen, H., Chen, W., Zhong, Q., Zhang, M., & Chen, W. (2021). Effect of ultrasonic treatment on the activity of sugar metabolism relative enzymes and quality of coconut water. Ultrasonics Sonochemistry, 79, 105780. https://doi.org/10.1016/j.ultsonch.2021.105780
Ye, H., Wang, B., Xiao, D., Li, H., Wu, D., Wang, J., Cheng, L., & Geng, F. (2023). Ultrasound-assisted pH-shifting to construct a stable aqueous solution of paprika oleoresin using egg yolk low-density lipoprotein as a natural liposome-like nano-emulsifier. Ultrasonics Sonochemistry, 98, 106477. https://doi.org/10.1016/j.ultsonch.2023.106477
Zhang, Q., Chen, Q.-H., & He, G.-Q. (2020). Effect of ultrasonic-ionic liquid pretreatment on the hydrolysis degree and antigenicity of enzymatic hydrolysates from whey protein. Ultrasonics Sonochemistry, 63, 104926. https://doi.org/10.1016/j.ultsonch.2019.104926
Zhou, X., Wang, C., Sun, X., Zhao, Z., & Guo, M. (2020). Effects of High Intensity Ultrasound on Physiochemical and Structural Properties of Goat Milk β-Lactoglobulin. Molecules, 25(16), 3637. https://doi.org/10.3390/molecules25163637
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores conservan sus derechos de autor sin restricciones.