Soil attributes and crops productivity: changes due to the long time use of animal manure

Autores/as

  • Arcângelo Loss Programa de Pós-graduação em Agroecossistemas -Universidade Federal de Santa Catarina, Rod Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, Brasil.CEP 880034-000, Florianópolis.
  • Monique Souza Programa de Pós-graduação em Agroecossistemas -Universidade Federal de Santa Catarina, Rod Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, Brasil.CEP 880034-000, Florianópolis.
  • Cledimar Rogério Lourenzi Programa de Pós-graduação em Agroecossistemas -Universidade Federal de Santa Catarina, Rod Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina.
  • Gustavo Brunetto Universidade Federal de Santa Maria, Departamento de Solos, Programa de Pós-graduação em Ciência do Solo, Santa Maria, Rio Grande do Sul.
  • Paulo Emilio Lovato Programa de Pós-graduação em Agroecossistemas -Universidade Federal de Santa Catarina, Rod Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, Brasil.
  • Jucinei José Comin Programa de Pós-graduação em Agroecossistemas -Universidade Federal de Santa Catarina, Rod Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, Brasil.

DOI:

https://doi.org/10.17268/agroind.sci.2022.01.13

Palabras clave:

swine and cattle manure, soil organic carbon, soil aggregation, biological activity, grain crops

Resumen

Animal manure may be used as a nutrient source for annual and perennial crops and pastures, promoting nutrient cycling and reducing costs with mineral fertilizers acquisition. Additionally, they are expected over the years to modify soil chemical, physical, and biological attributes. This review addresses the effect of animal manure applications on the soil-plant interface, emphasizing the following aspects: (a) animal manure characteristics that affect soil attributes, (b) changes in chemical, physical, and biological attributes of soils with a history of animal manure applications, and (c) effect of animal manure application on crop biomass production and yield. Changes on soil attributes depends on the animal manure and pedoclimatic characteristics. Animal manure applications in soil associated with mineral manure increase soil organic carbon and crop yield. Aggregates, density and water infiltration are favored by applying animal manure with high C:N. Macrofauna, microbial and biological activity increase with animal manure application. Finally, yield increases do not always accompany the improvement of all soil attributes. The effects of animal manure application on soil quality are more pronounced when carried out in an integrated manner with other soil management and conservation strategies.

Citas

Adeyemo, J., Omowunmi, A., Akingbola, O., & Ojeniyi, S. O. (2019). Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. Int. J. Recycl. Org. Waste Agric., 8:S73–S80.

Adeli, A., Bolster, C. H., Rowe, D. E., McLaughlin, M. R., & Brink, G. E. (2008). Effect of longterm swine effluent application on selected soil properties. Soil Sci., 173, 223235.

Adugna, G. A. (2016). review on impact of compost on soil properties, water use and crop productivity. Res. J. Agric. Sci., 4, 93-104.

Ahmed, S., Mickelson, S. K., Pederson, C., Baker, J. L., Kanwar, R. S., et al. (2013). Swine Manure Rate, Timing, and Application Method Effects on Post-Harvest Soil Nutrients, Crop Yield, and Water Quality Implications in a Corn-Soybean Rotation. Transactions of the ASABE., 56, 395-408.

Aita, C., Port, O., & Giacomini, S. J. (2006). Dinâmica do nitrogênio no solo e produção de fitomassa por plantas de cobertura no outono/inverno com o uso de dejetos de suínos. Rev Bras Cienc Solo., 30, 901-910.

Allison, S. D., Weintraub, M. N., Gartner, T. B., & Waldrop, M. P. (2011). Soil Enzymology. In: Shukla G, Varma A. Soil Biology. Berlin: Heidelberg Springer Berlin Heidelberg; p. 229-243.

Alves, M. V, Santos, J. C. P., Segat, J. C., Sousa, D. G., & Baretta, D. (2018). Influência de fertilizantes químicos e dejeto líquido de suínos na fauna do solo. Agrarian., 11, 219-229.

Alves, M. V., Santos, J. C. P., Gois, D. T., Alberton, J. V., & Baretta, D. (2008). Macrofauna do solo influenciada pelo uso de fertilizantes químicos e dejetos de suínos no oeste do estado de Santa Catarina. Rev Bras Cienc Solo., 32, 589-98.

Amezketa, E. (1999). Soil aggregate stability: a review. J. Sustain. Agric., 14, 83-151.

Anderson, T. H., & Domch, K. H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of diferente croppig histores. Soil Biol. Biochem., 22, 251-255.

Anderson, T. H., & Domsch, K. H. (2010). Soil microbial biomass: The ecophysiological approach. Soil Biol. Biochem., 42, 039-2043.

Andrade, A. P., Rauber, L. P., Mafra, A. L., Barretta D., Rosa, M. G., et al. (2016). Changes in physical properties and organic carbon od a Kandiudox fertilized with manure. Cienc Rural., 46, 809-814.

Antoneli, V., Mosele, A. C., Bednarz, J. A, Pulido-Fernández, M., et al. (2019). Effects of Applying Liquid Swine Manure on Soil Quality and Yield Production in Tropical Soybean Crops (Paraná, Brazil). Sustainability., 11, 3898.

Are, K. S., Adelana, A. O., Fademi, I. O. O., & Ainab, O. A. (2017). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agric. Nat. Resour., 51, 454-462.

Are, M., Kaart, T., Selge, A., Astover, A., & Reintam, E. (2018). The interaction of soil aggregate stability with other soil properties as influenced by manure and nitrogen fertilization. Zemdirbyste., 105(3), 195-202.

Arif, M., Ali, K., Jan, M. T., Shah, Z., Jones, D. L., & Quilliam, R. S. (2016). Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Res., 195, 28-35.

Arnosti, C. (2003). Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers for measurement of enzyme activities in complex media. J Chromatogr B, 793, 181-191.

Ashworth, A. J., DeBruyn, J. M., Allen, F. L., Radosevich, M., & Owens P. R. (2017). Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol Biochem., 114, 210-9.

Assefa, S., &Tadesse, S. (2019). The Principal Role of Organic Fertilizer on Soil Properties and Agricultural Productivity - A Review. Agri Res & Tech., 22(2), 556192.

Assis, E. P. M., Cordeiro, M. A. S., & Paulino, H. B. (2007). Efeito da aplicação de nitrogênio na atividade microbiana e na decomposição da palhada de sorgo em solo de cerrado sob plantio direto. Pesqui. Agropec. Trop., 33, 107-112.

Assis Valadão, F. C., Benedet, K. D, Weber, O. L. S., Valadão Júnior, D. D, & Silva, T. J. (2011). Variação nos atributos do solo em sistemas de manejo com adição de cama de frango. Rev. Bras. Cienc. Solo., 35, 2073-2082.

Assmann, T. S., Assmann, J. M., Cassol, L. C., Diehl, R. C, Manteli, C., & Magiero, E. C. (2007). Desempenho da mistura forrageira de aveia-preta mais azevém e atributos químicos do solo em função da aplicação de esterco líquido de suínos. Rev. Bras. Cienc. Solo., 31,1515-1523.

Balota, E. L., Machineski, O., & Truber, P. V. (2011). Soil enzyme activities under pig slurry addition and different tillage systems. Acta Sci. Agron., 33, 729-737.

Bandyopadhyay, K. K., Misra, A. K., Ghosh, P. K., & Hati, K. M. (2010). Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Till. Res., 110, 115-125.

Barbosa, G. M. C., Oliveira, J. F., Miyazawa, M., & Ruiz, D. B. (2015). Tavares Filho J. Aggregation and clay dispersion of an Oxisol treated with swine and poultry manures. Soil Till. Res.,146, 279-285.

Barth, G., Gotz, L. F., Favaretto, & N., Pauletti, V. (2020). Does Dairy Liquid Manure Complementary to Mineral Fertilization Increase Grain Yield Due to Changes in Soil Fertility? Braz. Arch. Biol. Technol, 63, e20190537.

Basso, C. J., Ceretta, C. A., Pavinato, O. S., & Silveira, M. J. (2004). Perdas de nitrogênio de dejeto líquido de suínos por volatilização de amônia. Ciênc. Rural., 34, 1773-1778.

Basso, C. J., Ceretta, C. A., Durigon, R., Poletto, N., & Girotto, E. (2005). Dejeto líquido de suínos: II-Perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Cienc. Rural., 35, 1305-1312.

Benedet, L., Ferreira, G. W., Brunetto, G., Loss, A., Lovato, P. E., et al. (2020). Use of Swine Manure in Agriculture in Southern Brazil: Fertility or Potential Contamination? In: Mateo Pulko. (Org.). J. Soil Contam., 1, 1-27.

Bertagnoli, B. G. P., Oliveira, J. F., Barbosa, G. M. C., & Colozzi Filho, A. (2020). Poultry litter and liquid swine slurry applications stimulate glomalin, extraradicular mycelium production, and aggregation in soils. Soil Tillage Res., 202, 104657.

Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021). Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy., 11, 823.

Braida, J. Á., Bayer, C., Albuquerque, J. Á., & Reichert, J. M. (2011). Matéria orgânica e seu efeito na física do solo. In: Filho OK, Mafra AL, Gatiboni LC. Tópicos em ciência do solo. 1nd ed. Sociedade Brasileira de Ciência do Solo, p. 221-278.

Brunetto, G., Comin, J. J., Schmitt, D. E., Guardini, R., Mezzari, C. P., et al. (2012). Changes in soil acidity and organic carbon in a sandy Typic Hapludalf after mediumterm pig slurry and deeplitter application. Rev. Bras. Cienc. Solo., 36, 16201628.

Brunetto, G., Miotto, A., Ceretta, C. A., Schmitt, D. E., Heinzen, J., et al. (2014). Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Arch. Agron. Soil Sci., 60, 609-624.

Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., et al. (2016). Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere., 162, 293-307.

Brunetto, G., Comin, J. J., Miotto, A., Moraes, M. P., Sete, P. B., et al. (2018). Copper and zinc accumulation, fractionation and migration in vineyard soils from Santa Catarina State, Brazil. Bragantia., 77, 141-151.

Casali, C. A., Moterle, D. F., Rheinheimer, D. S., Brunetto, G., Corcini, A. L. M., et al. (2008). Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Rev. Bras. Cienc. Solo., 32, 1479-1487.

Celik, I., Gunal, H., Budak, M., & Akpinar, C. (2010). Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma.;160:236–243.

Celik, I., Ortas, I., & Kilic, S. (2004). Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Res., 78, 59-67.

Ceretta, C. A., Durigon, R., Basso, C. J., Barcellos, L. A. R., & Vieira F. C. B. (2003). Características químicas de solo sob aplicação de esterco líquido de suínos em pastagem natural. Pesqui. Agropec. Bras., 38, 729-735.

Ceretta, C. A., Basso, C. J., Pavinato, P. S., Trentin, E. E, & Girotto, E. (2005). Produtividade de grãos de milho, produção de MS e acúmulo de nitrogênio, fósforo e potássio na rotação aveia preta/milho/nabo forrageiro com aplicação de dejeto líquido de suínos. Cienc. Rural., 35, 1287-1295.

Ceretta, C. A., Girotto, E., Lourenzi, C., R., Trentin, G., Vieira, R. C. B., & Brunetto, G. (2010a). Nutrient transfer in runoff under no tillage in a soil treated with successive applications of pig slurry. Agric. Ecosyst. Environ., 139,689-699.

Ceretta, C. A., Lorensini, F., Brunetto, G., Girotto, E., Gatiboni, L. C., et al. (2010b). Frações de fósforo no solo após sucessivas aplicações de dejetos de suínos em plantio direto. Pesqui. Agropec. Bras., 45,593-602.

Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2015). Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Exp. Agric., 52, 447-465.

Chantigny, M. H., Rochette P., Angers, D. A., Masse, D., & Cote, D. (2004). Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry. Soil Sci Soc Am J., 68,306-312.

Chantigny, M. H., Rochette, P., & Angers, D. A. (2001). Short-term, C and N dynamics in a soil amended with pig slurry and barley straw: A field experiment. Can. J. Soil Sci., 81,131-137

Cherubin, M. R., Eitelwein, M. T., Fabbris, C., Weirich, S. W., Da Silva R. F., et al. (2015). Physical, chemical, and biological quality in an oxisol under different tillage and fertilizer sources. Rev Bras Cienc. Solo., 39,615-25.

Ciancio, N. R., Ceretta, C. A., Lourenzi, C. R., Ferreira, P. A. A., Trentin, G., et al. (2014). Crop response to organic fertilization with supplementary mineral nitrogen. Rev. Bras. Cienc. Solo., 38,912-922

Comin, J. J., Loss, A., Veiga, M., Guardini, R., Schmitt, D. E., et al. (2013). Physical properties and organic carbon content of a typic hapludult soil fertilized with pig slurry and pig litter in a no-tillage system. Soil Research, 51, 459-470.

Couto, R. R., Lazzari, C. J. R., Trapp, T., De Conti, L., Comin, J. J., et al. (2016). Accumulation and distribution of copper and zinc soils following the application of pig slurry for three to thirty years in a microwatershed of southern Brazil. Arch. Agron. Soil Sci, 62, 593-616.

CQFS-RS/SC - Comissão de Química e Fertilidade do Solo – RS/SC. (2016). Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. Sociedade Brasileira de Ciência do Solo.

Dall'Orsoletta, D. J., Gatiboni, L. C., Mumbach, G. L., Schmitt, D. E., Boitt, G., Smyth, T. J. (2021). Soil slope and texture as factors of phosphorus exportation from pasture areas receiving pig slurry. Sci. Total Environ., 761,144004.

Das, S. K., & Varma, A. (2011). Role of enzymes in maintaining soil health. In: Shukla G, Varma A. (Eds.) Soil Enzymology. Berlin: Heidelberg, Springer Berlin Heidelberg, p. 25-42.

De Conti, L., Ceretta, C. A., Ferrreira, P. A. A., Lourenzi, C. R., Girotto E., et al. (2016). Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agric. Ecosyst. Environ., 216, 374-386.

De Conti, L., Ceretta, C. A., Couto, R. R., Ferreira, P. A. A., da Silva L. O. S., et al. (2017). Aluminum species and activity in sandy soil solution with pig slurry addition. Pesqui. Agropec. Bras., 52,914-922.

Dick, R. P., Breakwell, D. P., & Turco, R. F. (1996a). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA Special Publication No 49, Madison: WI, USA, p. 247–272.

Dordas, C. A., Lithourgidis, A. S., Matsi, T., & Barbayiannis, N. (2008). Application of liquid cattle manure and inorganic fertilizers affect dry matter, nitrogen accumulation, and partitioning in maize. Nutr. Cycling Agroecosyst., 80, 283-296.

Du, Y., Cui, B., Wang, Z., Sun, J., & Niu, W. (2020). Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena, 193, 104617.

Du, Z.-L., Wu, W.-L., Zhang, Q-.Z., Guo, Y., & Meng, F. Q. (2014). Long-Term Manure Amendments Enhance Soil Aggregation and Carbon Saturation of Stable Pools in North China Plain. J. Integr. Agric., 13, 2276-2285.

Eckhardt, D. P., Redin, M., Santana, N. A., De Conti, L., Dominguez, J., et al. (2018). Cattle manure bioconversion effect on the availability of nitrogen, phosphorus, and potassium in soil. Rev. Bras. Cienc. Solo., 42.

Eliaspour, S., Sharifi, R. S., & Shirkhani, A. (2020). Evaluation of interaction between Piriformospora indica, animal manure and NPK fertilizer on quantitative and qualitative yield and absorption of elements in sunflower. Int. J. Food Sci., 8, 2789-2797.

Falleiro, R. M., Souza, C. M., Silva, C. S. W., Sediyama, C. S., & Silva A. A., Fagundes, J. L. (2003). Influência dos sistemas de preparo nas propriedades químicas e físicas do solo. Rev. Bras. Cienc. Solo., 27, 1097-1104.

Ferreira, G. W., Benedet, L., Trapp, T., Lima, A. P., Muller Junior, V., et al. (2021a) Soil aggregation indexes and chemical and physical attributes of aggregates in a Typic Hapludult fertilized with swine manure and mineral fertilizer. Int. J. Recycl. Org. Waste Agric., 10, 1-17.

Ferreira, P. A. A., Coronas, M. V., Dantas, M. K. L., Somavilla, A., et al. (2021b) Repeated Manure Application for Eleven Years Stimulates Enzymatic Activities and Improves Soil Attributes in a Typic Hapludalf. Agronomy., 11(12), 2467.

Ferreira, P. A. A., Ceretta, C. A., Lourenzi, C. R., De Conti, L., Marchezan, C., et al. (2022). Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy., 12(2), 243.

Francisco, C. A. L., Loss, A., Brunetto, G., Gonzatto, R., Giacomini, S. J., et al. (2021). Aggregation, carbon, nitrogen, and natural abundance of 13C and 15N in soils under no-tillage system fertilized with injection and surface application of pig slurry for five years. Carbon Manag., 12, 257-268.

Freitas Alves, C. T., Cassol, P. C., Sacomori, W., Gatiboni, L. C., Ernani, P. R., et al. (2017). Influência da adubação com dejeto suíno e adubo mineral adicionada de inibidor de nitrificação sobre a produtividade e a nutrição do milho. Rev. Ciênc. Agrovet., 16, 2-10.

Gatiboni, L. C., Smyth, T. J., Schmitt, D. E., Cassol, P. C., Oliveira C. M. B. (2014). Proposta de limites críticos ambientais de fósforo para solos de Santa Catarina. Lages: UDESCCAV,

Gatiboni, L. C., & Nicoloso, R. S. (2019). Uso de dejetos animais como fertilizante: impactos ambientais e a experiência de Santa Catarina. In: Jului Cesar Pascale Palhares. (Org.). Produção animal e recursos hídricos: tecnologias para manejo de resíduos e uso eficiente dos insumos. 1nd ed. Brasília: Embrapa. p. 79-97.

Geng, Y., Cao, G., Wang, L., & Wang, S. (2019). Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. Plos One., 14, e0219512.

Giacomini, S. J., Aita, C., Pujol, S. B., & Miola, E. C. C. (2013). Transformações do nitrogênio no solo após adição de dejeto líquido e cama sobreposta de suínos. Pesqui. Agropec. Bras., 48, 211-219.

Girotto, E., Ceretta, C. A., Brunetto, G., Santos, D. R., Silva, L. S., et al. (2010). Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Rev. Bras. Cienc. Solo., 34, 955-965.

Girotto, E., Ceretta, C. A., Lourenzi, C. R., Lorensini, F., Tiecher, T. L., et al. (2013a). Nutrient transfer by leaching in a no-tillage system through soil treated with repeated pig slurry applications. Nutr. Cycling Agroecosyst., 95, 115-131.

Girotto, E., Ceretta, C. A., Rossato, L. V., Farias, J. G., Tiecher, T. L., et al. (2013b). Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry. Ecotoxicol Environ Saf., 93, 145-155.

Glatz, P., Miao, Z., & Rodda, B. (2011). Handling and treatment of poultry hatchery waste: A review. Sustainability., 3, 216–237.

Gross, A., & Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci Rep. 2021, 11, 5516.

Guardini, R., Comin, J. J., Schmitt, D. E., Tiecher, T., Bender, M. A., et al. (2012). Accumulation of phosphorus fractions in typic Hapludalf soil after longterm application of pig slurry and deep pig litter in a notillage system. Nutr. Cycling Agroecosyst., 93, 215225.

Guerrero, C., Moral, R., Gómez, I., Zornoza, R., Arcenegui, V. (2007). Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Biores Technol., 98, 3259-3264.

Haynes, R. J., & Naidu, R. (1998). Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions: A review. Nutr. Cycling Agroecosyst., 51, 123-137.

Gülser, C., & Candemir, F. (2015). Effects of agricultural wastes on the hydraulic properties of a loamy sand cropland in Turkey. J. Soil Sci. Plant Nutr., 61, 384–391

Hati, K. M., Mandal, K. G., Misra, A. K., Ghosh, P. K., & Bandyopadhyay, K. K. (2006). Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Biores. Technol., 97, 2182-2188.

Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J., 46, 970976.

Hernández, D., Plaza, C., Senesi, N., & Polo, A. (2006). Detection of copper (II) and zinc (II) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy. Environ. Pollut., 143, 212220.

Homem, B. G. C., Almeida Neto, O. B., Santiago, A. M. F., & Souza, G. H. (2012). Dispersão da argila provocada pela fertirrigação com águas residuárias de criatórios de animais. Rev. Bras. Agropec. Sustentável., 2, 89-98.

Hoover, N. L., Law, J. Y., Long, L. A. M., Kanwar, R. S., & Soupir, M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag., 252, 109582.

Hue, N. V., & Licudine, D. L. (1999). Amelioration of subsoil acidity through surface application of organic manures. J. Environ. Qual., 28, 623-632.

Instituto Brasileiro de Geografia e Estatística (IBGE). Indicadores IBGE: Estatística de produção pecuária. Pesquisa da Pecuária Municipal, 2018 [cited 2021 July 13]. Available from: https://agenciadenoticias.ibge.gov.br/media/com_mediaibge/arquivos/9130d7d3e67662a2277b97bde61a52d0.pdf

Islam, K. R., & Weil, R. R. (2000). Soil quality indicator properties in mid- Atlantic soils as influenced by conservation management. J. Soils Water Conserv., 55, 69-78.

Jung, W. K., Kitchen N. R., Anderson, S. H., & Sadler, E. J. (2007). Crop management effects on water infiltration for claypan soils. J. Soils Water Conserv., 62, 55-63.

Konzen, E. A. (2000). Anternativas de manejo, tratamento e utilização de dejetos animais em sistemas integrados de produção. Sete Lagoas, MG: Embrapa Milho e Sorgo,

Konzen, E. A., & Alvarenga, R. C. (2005). Manejo e Utilização de Dejetos Animais: aspectos agronômicos e ambientais. Sete Lagoas, MG: Embrapa Milho e Sorgo.

Kyle, J., Ankenbauer, S., & Loheide, P. (2017). The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrological Processes, 31, 891–901.

Laad, F. N. (1978). Origin and range of enzymes in soil. In: BURNS, R.G (Ed.). Soil Enzymes. New York: Academic Press. p. 51-97

Leita, L., De Nobili, M., Mondini, C., Mühlbachová, G., Marchiol, L., et al. (1999). Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biol Fertil Soils., 28, 371–376.

Li, J. T., Zhong, X. L., Wang, F., Zhao, Q. G. (1999). Effect of poultry litter and livestock manure on soil physical and biological indicators in a rice-wheat rotation system. Plant soil Environ, 57, 351–356.

Liu, T., Chen, X., Hu, F., Ran, W., Shen, Q., et al. (1999). Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agric Ecosyst Environ, 232, 199-207.

Locatelli, J. L., Bratti, F., Ribeiro, R. H., Besen, M. R., Turcatel, D., & Piva, J. T. (2019). Uso de dejeto líquido de suínos permite reduzir a adubação mineral na cultura do milho? Rev. Ci. Agrárias, 42, 31-40.

Loss, A., Lourenzi, C. R., Mergen Junior, C. A., Santos Junior, E., Benedet, L., et al. (2017). Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil Tillage Res, 166, 52-58.

Loss, A., Couto, R. R., Brunetto, G., Veiga, M., Toselli, M., & Baldi, E. (2019a). Animal Manure As Fertilizer: Changes In Soil Attributes, Productivity And Food Composition. Int. J. Res. – Granthaalayah, 7, 307-331.

Loss, A., Gonzatto, R., Cesco, S., Mimmo, T., Pii, Y., et al. (2019b). Rizosfera e as reações que ocorrem no seu entorno. In: Fayad JA, Arl V, Comin JJ, Mafra AL, Marchesi DR. Sistema de plantio direto de hortaliças: método de transição para um novo modo de produção. 1nd ed. São Paulo: Expressão Popular, p. 175-212.

Loss, A., Ventura, B. S., Muller Junior, V., Gonzatto, R., Battisti, L. F. Z., et al. (2021). Carbon, nitrogen and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer. Journal of Soil and Water Conservation, 1-20

Lourenzi, C. R., Ceretta, C. A., Silva, L. S., Trentin, G., Girotto, E., et al. (2011). Soil chemical properties related to acidity under successive pig slurry applications. Rev. Bras. Cienc. Solo., 35, 18271836.

Lourenzi, C. R., Ceretta, C. A., Silva, L. S., Girotto, E., Lorensini, F., et al. (2013). Nutrients in layers of soil under no-tillage treated with successive applications of pig slurry. Rev. Bras. Cienc. Solo., 37, 157-167.

Lourenzi, C. R., Ceretta, C. A., Brunetto, G., Girotto, E., Tiecher, T. L., et al. (2014a). Pig slurry and nutrient accumulation and dry matter and grain yield in various crops. Rev. Bras. Cienc. Solo., 38, 949-958.

Lourenzi, C. R., Ceretta, C. A., Cerini, J. B., Ferreira, P. A. A., Lorensini, F., et al. (2014b). Available content, surface runoff and leaching of phosphorus forms in a Typic Hapludalf treated with organic and mineral nutrient sources. Rev. Bras. Cienc. Solo., 38, 544-556.

Lourenzi, C. R., Ceretta, C. A., Tiecher, T. L., Lorensini, F., Cancian, A., et al. (2015). Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications. Environmental Monit Assess., 187, 1-16.

Lourenzi, C. R., Scherer, E. E., Ceretta, C. A., Tiecher, T. L., Cancian, A., et al. (2016). Atributos químicos de Latossolo após sucessivas aplicações de composto orgânico de dejeto líquido de suínos. Pesq. Agropec. Bras., 51, 233-242.

Lourenzi, C. R., Ceretta, C. A., Ciancio, N. H. R., Tiecher, T. L., da Silva, L. O. S., et al. (2021). Forms of nitrogen and phosphorus transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications. Agric. Water Manag., 248, 106779.

Manitoba. (2015). Properties of Manure. [cited 2021 July 18]. Available from: https://www.gov.mb.ca/agriculture/environment/nutrient-management/pubs/properties-of-manure.pdf

Mariotto, J. R., Klauberg Filho, O., Mendonça Cardoso, I. C., Neves, N. A., Miquelutti, D. J. (2014). Fósforo microbiano e extraível em Latossolo com adição de dejeto suíno sob plantio direto de milho. RevCi Agroveterinárias, 13, 64-75.

Mcguire, K. L., & Treseder, K. K. (2010). Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol Biochem., 42, 529-535.

Mellek, J. E., Dieckow, J., Silva, V. L., Faveretto, N., Pauletti, V., et al. (2010). Dairy liquid manure and no-tillage: Physical and hydraulic properties and carbon stocks in a Cambisol of Southern Brazil. Soil Tillage Res., 110, 69-76.

Melo, T. R., Figueiredo, A., Machado, W., Tavares Filho, J. (2019). Changes on soil structural stability after in natura and composted chicken manure application. Int. J. Recycl. Org. Waste Agric., 1, 1-6,

Mendes, I. C., Souza, L. M., Sousa, D. M. G., Lopes, A. A. C., et al. (2019). Critical limits for microbial indicators in tropical Oxisols at post-harvest: The FERTBIO soil sample concept. Appl Soil Ecol., 139, 85-93.

Menzi, H., Oenema, O., Burton, C., Shipin, O., et al. (2010). Impacts of intensive livestock production and manure management on the environment. Livestock in a Changing Landscap., 1, 139–163.

Mergen Junior, C. A., Loss, A., Santos Junior, E., Giumbelli, L. D., et al. (2019b). Caracterização física de agregados do solo submetido a 10 anos de aplicação de dejetos suínos. Rev. Cienc. Agr., 36, 79-92.

Mergen Junior, C. A., Loss, A., Santos Junior, E., Ferreira, G. W., Comin, J. J., et al. (2019b). Atributos químicos em agregados biogênicos e fisiogênicos. Revista Brasileira de Ciências Agrárias., 14, e5620.

Miyazawa, M., & Barbosa, G. M. C. (2015). Dejeto líquido de suíno como fertilizante orgânico: método simplificado. IAPAR: Londrina.

Morales, D., Vargas, M. M., Oliveira, M. P., Taffe, B. L., Comin, J. J., et al. (2016). Response of soil microbiota to nine-year application of swine manure and urea. Cienc. Rural., 46, 260-6.

Morse, D., Nordstedt, R. A., Head, H. H., & Van Horn, H. H. (1994). Production and characteristics of manure from lactating dairy cows in Florida. Trans. ASAE (Am. Soc. Agric. Eng.), 7, 275-9.

Moura, A. C., Sampaio, S. C., Remor, M. B., Da Silva, A. P., & Pereira P. A. M. (2016). Long-term effects of swine wastewater and mineral fertilizer association on soil microbiota. Eng Agric., 36, 318-28.

Navroski, D., Filho, A. C., Barbosa, G. M. C., & Moreira, A. (2021). Soil attributes and microbial diversity on 28 years of continuous and interrupted for 12 months of pig slurry application. Chil J Agric Res., 81, 27-38.

Nyamangara, J., Gotosa, J., & Mpofu, S. E. (2001). Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Tillage Res, 62, 157-162.

Oades, J. M. (1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil., 76, 319-337.

Oliveira, P. A. V. (2002). Produção e manejo de dejetos de suínos. In: Embrapa Suínos e Aves. (Org.). Curso de Capacitação em Práticas Ambientais Sustentáveis Treinamentos. Concórdia: Embrapa Suínos e Aves. p. 72-90. [2021 July 13]. Available from: http://www.cnpsa.embrapa.br/pnma/pdf_doc/8-PauloArmando_Producao.pdf.

Oliveira Filho, L. C. I., Schneider, L. F., Teles, J. S., Werter, S. D., & Santos, J. C. P. (2018). Fauna Edáfica Em Áreas Com Diferentes Manejos E Tempos De Descarte De Resíduos Animais. Sci Agrar., 19, 113.

Orrico Junior, M. A. P., Amorim, A. C., & Lucas Junior, J. (2011). Produção animal e o meio ambiente: uma comparação entre potencial de emissão de metano dos dejetos e a quantidade de alimento produzido. Eng Agric., 31, 399-410.

Paldolfo, C. M., & Veiga, M. (2016). Crop yield and nutrient balance influenced by shoot biomass management and pig slurry application. Revista Brasileira de Engenharia Agrícola e Ambiental., 20, 302-307.

Pan, R., Martinez, A. S., Brito, T. S., Seidel, E. P. (2018). Processes of soil infiltration and water retention and strategies to increase their capacity. J. Exp. Agric. Int., 20, 1-14.

Parizotto, C., Pandolfo, C. M., & Veiga, M. (2018). Dejetos líquidos de bovinos na produção de milho e pastagem anual de inverno em um Nitossolo Vermelho. Agropecuária Catarinense., 31, 67-71.

Parkin, T., Doran, J., & Franco – Vizcaíno, E. (1996). Field and laboratory test of soil respiration. In: Doran, J., Jones A. (Eds.), Methods for Assessing Soil Quality. Soil Science Society of America. New York. p.231 – 246.

Pavinato, O. S., & Rosolem, C. A. (2008). Disponibilidade de nutrientes no solo – decomposição e liberação de compostos orgânicos de resíduos vegetais. R. Bras. Ci. Solo., 32, 911-920.

Plaza, C., Hernández, D., García-Gil, J. C., & Polo, A. (2004). Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biol Biochem., 36, 1577-1585.

Plaza, C., García-Gil, J. C., & Polo, A. (2007). Microbial activity in pig slurry-amended soils under aerobic incubation. Biodegradation, 18, 159-165.

Quadro, M. S., Castilhos, D. D., Castilhos, R. M. V., & Vivian, G. (2011). Biomassa e atividade microbiana em solo acrescido de dejeto suíno. R. Bras. Agrociência., 17, 85-93.

Rauber, L. P., Piccolla, C. D., Andrade, A. P., Friederichs, A., Mafra, A. L., et al. (2012). Physical properties and organic carbon content of a Rhodic Kandiudox fertilized with pig slurry and poultry litter. Rev. Bras. Cienc. Solo., 36, 1323–1332.

Rayne N, & Aula, L. (2020). Livestock manure and the impacts on soil health: A review. Soil Syst., 4, 1-26.

Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res., 43, 131-167.

Rigo, A. Z., Corrêa, J. C., Mafra, A. L., Hentz, P., & Grohskopf, M. A., et al. (2019). Phosphorus fractions in soil with organic and mineral fertilization in integrated crop-livestock system. Rev. Bras. Cienc. Solo., 43, e0180130.

Ruangcharus, C., Kim, S. U., Yoo, G., Choi, E., Kumar, S., et al. (2021). Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures. Environ Pollut., 279, 116892.

Saviozzi, A., Levi-Minzi, R., Riffaldi, R., & Vanni, G. (1997). Laboratory studies on the application of wheat straw and pig slurry to soil and the resulting environmental implications. Agric. Ecosyst. Environ., 61, 35-43.

Scherer, E. E., Baldissera, I. T., & Dias, L. F. X. (1995). Potencial fertilizante do esterco líquido de suínos da região Oeste Catarinense. Agropecuária Catarinense, 8, 35-39.

Scherer, E. E., Nesi, C. N., & Massotti, Z. (2010). Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas de Santa Catarina. Rev. Bras. Cienc. Solo., 34, 13751383.

Schnurer, J., & Rosswall, T. (1982). Fluorescein Diacetate Hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol., 43, 1256-126.

Segat, J. C., Alves, P. R. L, Baretta, D., & Cardoso, E. J. B. N. (2020). Ecotoxicological effects of swine manure on folsomia candida in subtropical soils. An Acad Bras Cienc., 92, 1-10.

Silva, I. R., Mendonça, E. S. (2007). Matéria orgânica do solo. In: Novais R, Alvarez V, Barros NF. (Eds.) Fertilidade do solo. Viçosa, MG, Sociedade Brasileira de Ciência do Solo. p. 275-374.

Silva, D. M., Jacques, R. J. S., Silva, D. A. A., Santana, N. A., Vogelmann, E., et al. (2016a). Effects of pig slurry application on the diversity and activity of soil biota in pasture areas. Cienc Rural., 46, 1756-63

Silva, R. F., Bertollo, G. M., Antoniolli, Z. I., Corassa, G. M., & Kuss, C. C. (2016b). Population fluctuation in soil meso- and macrofauna by the successive application of pig slurry. Rev Cienc Agron., 47, 221-8.

Singh, B., & Ryan, J. (2015). Managing Fertilizers on Enhance Soil Health. 1nd ed. Paris, France: IFA.

Six, J., Bossuyt, H., De Gryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7-31.

Sparling, G. P. (1997). Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst, C.E., Doube, B.M., Gupta, V. (Eds.) Biological indicators of soil health. New York: CAB International. p. 97-119.

Souza, M., Vargas, M. M., Ventura, B. S., Junior, V. M., Soares, C. R. F. S., et al. (2020). Microbial activity in soil with onion grown in a no-tillage system with single or intercropped cover crops. Cienc Rural., 50, 1-11.

Steinberger, Y., & Shore, L. (2009). Soil Ecology and Factors affecting biomass. In: Pruden, A., Shore, L.S. (Eds.), Hormones and Pharmaceuticals Generated by Concentrated Animal Feeding Operations. New York: Springer. p. 53-61.

Suleiman, A. K. A., Gonzatto, R., Aita, C., Lupatini, M., Jacques, R. J. S., et al. (2016). Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biol Biochem., 97, 71–82.

Tabatabai, M. A. (1994). Enzymes. In: Weaver, R.W., Augle, S., Bottomly, P.J. et al. (Eds.). Methods of soil analysis. Part 2. Microbial and biochemical properties. Madison: SSSA. p. 775-833.

Tessier, A, Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry., 51, 844-851

Tiecher, T. L., Ceretta, C. A., Comin, J. J., Girotto, E., Miotto, A., et al. (2013). Forms and accumulation of copper and zinc in a sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. Rev. Bras. Cienc. Solo., 37, 812-824.

Tiecher, T. L., Ceretta, C. A., Ferreira, P. A. A., Lourenzi, C. R., Tiecher, T., et al. (2016). The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma., 262, 52-61

Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water stable aggregates in soils. J. Soil Sci., 33, 141-163

Ventura, B. S., Loss, A., Giumbelli, L. D., Ferreira, G. W., et al. (2018). Carbon, nitrogen and humic substances in biogenic and physiogenic aggregates of a soil with a 10 year history of successive applications of swine waste. Tropical and subtropical agroecosystems., 21, 329-343.

Ventura, B. S., Loss, A., Comin, J. J., Sepulveda, C. M., Brunetto, G., & Lovato, P. E. (2020), Carbon, nitrogen and granulometric fractions in biogenic and physiogenic aggregates of a soil with a history of 10-years of successive swine waste applications. Res., Soc. Dev., 9, 10, e5139108776, 2020.

Vezzani, F. M., & Mielniczuk, J. (2009). Uma visão sobre qualidade do solo. Rev Bras Ciência Do Solo., 33, 743-55.

Wang, X., Jia, Z., Liang, L., Yang, B., Ding, R., et al. (2016). Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming. Sci. Rep., 6, 20994.

Whalen, J. K., Chang, C., Clayton, G. W., & Carefoot, J. P. (2000). Cattle manure amendments can increase the pH of acid soils. Soil Sci Soc Am J., 64, 962-966

Yague, M. R., Domingo-Olive, F., Bosch-Serra, A. D., Poch, R. M., & Boixadera, J. (2016) Dairy cattle manure effects on soil quality: Porosity, earthworms aggregates, and soil organic carbon fractions. Land Degrad Dev., 27, 1753-1762.

Yang, Y., Ashworth, A. J., DeBruyn, J. M., Willett, C., Durso, L. M., et al. (2019). Soil bacterial biodiversity is driven by long-term pasture management, poultry litter, and cattle manure inputs. PeerJ., 1-20.

Yoganathan, R., Gunasekera, H. K. L. K., & Hariharan, R. (2013). Integrated Use of Animal Manure and Inorganic Fertilizer on Growth and Yield of Vegetable Cowpea (Vigna uniquiculata). International Int. J. Sci. Res. Innov. Std. Language., 7, 775-77.

Zhou, H., Peng, X., Perfect, E., Xiao, T., Peng, G. (2013). Effects of organic and inorganic fertilization on soil aggregation in an ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma, 195–196, 23–30.

Descargas

Publicado

2022-04-05

Cómo citar

Loss, A. ., Souza, M. ., Rogério Lourenzi, C. ., Brunetto, G. ., Emilio Lovato, P., & José Comin, J. . (2022). Soil attributes and crops productivity: changes due to the long time use of animal manure. Agroindustrial Science, 12(1), 103-121. https://doi.org/10.17268/agroind.sci.2022.01.13

Número

Sección

Artículo de Revisión

Artículos más leídos del mismo autor/a