Propiedades farmacológicas del jengibre (Zingiber officinale) para la prevención y el tratamiento de COVID-19

Autores/as

  • Paola Jorge-Montalvo Centro de Investigación en Química, Toxicología y Biotecnología Ambiental, Departamento Académico de Química, Facultad de Ciencias, Universidad Nacional Agraria La Molina. Av. La Molina s/n, La Molina, Lima. http://orcid.org/0000-0002-3958-5478
  • Carlos Vílchez-Perales Departamento Académico de Nutrición, Facultad de Zootecnia, Universidad Nacional Agraria La Molina. Av. La Molina s/n, La Molina, Lima. http://orcid.org/0000-0002-4757-527X
  • Lizardo Visitación-Figueroa Centro de Investigación en Química, Toxicología y Biotecnología Ambiental, Departamento Académico de Química, Facultad de Ciencias, Universidad Nacional Agraria La Molina. Av. La Molina s/n, La Molina, Lima. http://orcid.org/0000-0001-9625-2066

DOI:

https://doi.org/10.17268/agroind.sci.2020.03.16

Resumen

COVID-19, considerada como una epidemia global, está afectando a miles de personas ocasionando muerte. Actualmente, la comunidad científica sigue en la búsqueda del fármaco efectivo que module los efectos ocasionados por el SARS-CoV-2, ante ello se plantea alternativas para su prevención y tratamiento mediante compuestos bioactivos naturales, como es el caso del jengibre. El jengibre presenta compuestos volátiles y no volátiles con propiedades farmacológicas importantes como antioxidante, antiinflamatoria, antiemético, antiviral; los compuestos fenólicos del aceite de jengibre presentan efecto sinérgico al actuar como antioxidante y antiinflamatorio, entre estos compuestos destacan gingerol, shogaol, zingerona y las gingerdionas. La actividad antiinflamatoria del jengibre está relacionada con la reducción de la expresión de ARNm de biomarcadores como las interleucinas (IL-6) y podría actuar de forma similar como el Tocilizumab, medicamento usado para tratar a pacientes con COVID-19; así mismo, presenta actividad antiviral al inhibir a las proteínas del SARS-CoV-2, al unirse con el ECA-2, 3CLpro y PLpro, y una actividad antiemética mediante el cual disminuirá los síntomas del paciente. Se concluye que las propiedades farmacológicas del jengibre y sus extractos etanólicos y metanólicos ricos en fenoles totales como los gingeroles y shogaoles tienen gran potencial para la prevención y el tratamiento de los síntomas de COVID-19.

Citas

Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. 2020. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. International Journal of Biological Macromolecules 164: 1693-1703.

Acuña, O.; Torres, A. 2010. Aprovechamiento de las propiedades funcionales del jengibre (Zingiber officinale) en la elaboración filtrante y aromatizante para quema. Revista politécnica 29: 60-69.

Adanlawo, I.G.; Dairo, F.A.S. 2007. Nutrient and Anti-nutrient Constituents of Ginger (Zingiber officinale, Roscoe) and the Influence of its Ethanolic Extract on Some Serum Enzymes in Albino Rats. International J. of Biological Chemistry 1: 38-46.

Adem, Ş.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Fawad, A.; Ali, M.; Abdalla, M.; Ibrahim, I.; Elfiky, A.A. 2020. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 6: 153310.

Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology 46(2): 409-420.

Amin, S.A.; Jha, T. 2020. Fight against novel coronavirus: A perspective of medicinal chemists. European Journal of Medicinal Chemistry 201: 112559.

Amir, M.; Khan, A.; Mujeeb, M.; Ahmad, A.; Usmani, S.; Akhtar, M. 2011. Phytochemical Analysis and in vitro Antioxidant Activity of Zingiber officinale. Free Radicals and Antioxidants 1(4): 75-81.

Amirian, E.S. 2020. Potential Fecal Transmission of SARS-CoV-2: Current Evidence and Implications for Public Health. International Journal of Infectious Diseases 95: 363-370.

Bartley, J.P.; Jacobs, A.L. 2000. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture 80(2): 209-215.

Basirat, Z.; Moghadamnia, A.A.; Kashifard, M.; Sarifi-Razavi, A. 2009. The Effect of Ginger Biscuit on Nausea and Vomiting in Early Pregnancy. Acta medica Iranica 47(1): 51-56.

Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Der, C.; Ageno, W.; Madjid, M.; Guo, Y.; Tang, L.V.; Hu, Y.; Giri, J.; Cushman, M.; Dimakakos, E.P.; Gibson, C.M.; Lippi, G.; Favaloro, E.J.; Fareed, J.; Caprini, A.; Tafur, A.J.; Burton, J.R.; Dominic, P.; Wang, E.Y.; Falanga, A.; Mclintock, C.; Hunt, B.J.; Spyropoulos, A.C.; Barnes, G.D.; Eikelboom, W.; Weinberg, I.; Schulman, S.; Carrier, M.; Piazza, G.; Beckman, J.A.; Steg, P.G.; Stone, G.W.; Rosenkranz, S.; Goldhaber, S.Z.; Parikh, A.; Monreal, M.; Krumholz, H.M.; Stavros, V.; Weitz, J.I.; Lip, G.Y.H. 2020. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. Journal of the American College of Cardiology 75(23): 2950–2973.

Cerezal, P.; Acosta, E.; Rojas, G.; Romero, N.; Arcos, R. 2012. Desarrollo de una bebida de alto contenido proteico a partir de algarrobo, lupino y quinoa para la dieta de preescolares. Nutrición Hospitalaria 27(1): 232-243.

Chang, J.S.; Wanga, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. 2013. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology 145(1): 146-151.

Chen, G.; Yuan, B.; Wang, H.; Qi, G.; Cheng, S. 2019. Characteri-zation and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes. International Journal of Biological Macromolecules 139: 801-809.

Chen, H.; Du, Q. 2020. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints 2(February).

Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395(10223): 507-513.

Cheung, K.S.; Hung, I.F.; Chan, P.P.; Lung, K.C.; Tso, E.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.; Tam, A.R.; Yip, C.C.; Leung, K.-H.; Yim-Fong F.A.; Zhang, R.R.; Lin, Y.; Cheng, H.M.; Zhang, A.J.; To, K.K.; Chan, K.-H.; Yuen, K.-Y.; Leung, W.K. 2020. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. Gastroenterology 159: 81-95.

Chikkanna, D.; Dinesha, R.; Subhas, C.; Santosh, K.; Shewetha, K.; Ranjitha, P. 2016. Asian Journal of Pharmaceutical and Health Sciences. Asian Journal of Pharmaceutical and Health Sciences 6(2): 1472-1476.

D’Amico, F.; Baumgart, D.C.; Danese, S.; Peyrin-Biroulet, L. 2020. Diarrhea during COVID-19 infection: pathogenesis, epidemio-logy, prevention and management. Clinical Gastroenterology and Hepatology 18: 1663-1672.

Deng, J.; Hou, X.; Zhang, T.; Bai, G.; Hao, E.; Chu, J.J.H.; Wattanathorn, J.; Sirisa-ard, P.; Soo Ee, C.; Low, J.; Liu, C. 2020. Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chinese Herbal Medicines 12(3): 207-213.

Denyer, C.V.; Jackson, P.; Loakes, D. 1994. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Journal of Natural Products 57(5): 658-662.

Diao, B; Wang, C; Tan, Y; Chen, X; Liu, Y; Ning, L; Chen, L; Li, M; Liu, Y; Wang, G; Yuan, Z; Feng, Z; Wu, Y; Chen, Y. 2020. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology 2019:1-14.

Ding, S.; Liang, T.J. 2020. Is SARS-CoV-2 Also an Enteric Pathogen with Potential Fecal-Oral Transmission: A COVID-19 Virological and Clinical Review. Gastroenterology 159(1): 53-61.

Dugasani, S.; Pichikac, M.R.; Nadarajahc, V.D.; Balijepalli, M.K.; Tandraa, S.; Korlakuntab, J.N. 2010. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology 127(126): 515-520.

Dwarka, D.; Agoni, C.; Mellem, J.J.; Soliman, M.E.; Baijnath, H. 2020. Identification of potential SARS-CoV-2 inhibitors from South African medicinal plant extracts using molecular modelling approaches. South African Journal of Botany 173: 273-284.

El-Baroty, G.S.; Abd El-Baky, H.H.; Farag, R.S.; Saleh, M.A. 2013. Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Advanced Research Journal of Biochemistry 1(4): 78-85.

Eleazu, C.O.; Eleazu, K.C. 2012. Physico-chemical Properties and Antioxidant Potentials of 6 New Varieties of Ginger (Zingiber officinale). American Journal of Food Technology 7(4): 214-221.

Enríquez, A.M.; Prieto, E.P. 2007. Estudio Farmacognóstico y Fitoquímico del Rizoma de Zingiber officinale Roscoe ·Jengibre de la Ciudad de Chanchamayo - Región Junín - Perú. s.l., s.e. 88 pp.

Ensiyeh, J.; Sakineh, M.-A. 2009. Comparing ginger and vitamin B6 for the treatment of nausea and vomiting in pregnancy: a randomised controlled trial. Midwifery 25(6): 649-653.

Fan, Z.; Chen, L.; Li, J.; Cheng, X.; Yang, J.; Tian, C.; Zhang, Y.; Huang, S.; Liu, Z.; Cheng, J. 2020. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clinical Gastroente-rology and Hepatology 18(7): 1561-1566.

FDA - Food and Drug Administration. 2020. Cautions Against Use of Hydroxychloroquine or Chloroquine for COVID-19 Outside of the Hospital Setting or a Clinical Trial Due to Risk of Heart Rhythm Problems. Disponible en: https://www.fda.gov/drugs/drugsafety-and-availability/fda-cautions-against-use-hydroxychloroquine-orchloroquine-covid-19-outside-hospital-setting-or.

Goh, G.K.M.; Dunker, A.K.; Foster, J.A.; Uversky, V.N. 2020. Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microbial Pathogenesis 144: 104177.

Goswami, D.; Kumar, M.; Ghosh, S.; Das, A. 2020. Natural Product Compounds in Alpinia officinarum and Ginger are Potent SARS-CoV-2 Papain-like Protease Inhibitors. Preprints 16 pp.

Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.L.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. 2020. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 382(18): 1708-1720.

Al Hroob, A.M.; Abukhalil, M.H.; Alghonmeen, R.D.; Mahmoud, A.M. 2018. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomedicine and Pharmacotherapy 106: 381-389.

Huang, F.; Li, Y.; Leung, E.L.H.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; Luo, H.; Luo, L. 2020. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacological Research 158: 104929.

Imanishi, N.; Andoh, T.; Mantani, N.; Sakai, S. 2006. Macrophage-Mediated Inhibitory Effect of Zingiber officinale Rosc, A Traditional Oriental Herbal Medicine on the Growth of Influenza A / Aichi / 2 / 68 Virus. The American Journal of Chinese Medicine 34(1): 157-169.

Jolad, S.D.; Lantz, R.C.; Solyom, A.M.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. 2004. Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry 65(13): 1937-1954.

Kim, M.K.; Chung, S.W.; Kim, D.H.; Kim, J.M.; Lee, E.K.; Kim, J.Y.; Young, H, Yun, K.; Jae-Kyung, H., Kun-Young, J.; et al. 2010. Modulation of age-related NF- kB activation by dietary zingerone via MAPK pathway. Experimental Gerontology 45(6): 419-426.

Kizhakkayil, J.; Sasikumar, B. 2011. Diversity, characterization and utilization of ginger: A review. Plant Genetic Resources: Characterisation and Utilisation 9(3): 464-477.

Kodchakorn, K.; Poovorawan, Y.; Suwannakarn, K.; Kongtawelert, P. 2020. Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2. Journal of Molecular Graphics and Modelling 101: 107717.

Kou, X.; Ke, Y.; Wang, X.; Rahman, M.R.T.; Xie, Y.; Chen, S.; Wang, H. 2018. Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry 257(8): 223-229.

Kumari, S.; Gupta, A. 2016. Nutritional composition of dehydrated ashwagandha, shatavari, and ginger root powder. International Journal of Home Science IJHS 2(23): 68-70.

Lee, T.; Lee, K.; Chen, S.; Chang, H. 2009. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC- a and NF- j B pathways in lipopolysaccharide-stimulated mouse macro-phages. Biochemical and Biophysical Research Communica-tions 382(1): 134-139.

Levine, M.E.; Gillis, M.G.; Yanchis, S.; Voss, A.C.; Stern, R.; Koch, K.L. 2008. Protein and Ginger for the Treatment of Chemotherapy-Induced Delayed Nausea. The Journal of Alternative and Complementary Medicine 14(5): 545-551.

Li, X.; Mcgrath, K.C.Y.; Tran, V.H; Li, Y.; Duke, C.C.; Roufogalis, B.D.; Heather, A.K. 2013. Attenuation of Proinflammatory Responses by S - [6] -Gingerol via Inhibition of ROS / NF-Kappa B / COX2 Activation in HuH7 Cells. Hindawi Publishing Corporation 2013: 1-9.

Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. 2016. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1011: 223-232.

Liang, T. 2020. Manual de prevención y tratamiento del COVID-19. Disponible en: http://www.embajadachina.org.pe/esp/sghd/P020200331264861016485.pdf

Lien, H.C.; Sun, W.M.; Chen, Y.H.; Kim, H.; Hasler, W.; Owyang, C. 2003. Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. American Journal of Physiology - Gastrointestinal and Liver Physiology 284(3 47-3): 481-489.

Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. 2020. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine 27(2): 1-6.

Luan, J.; Lu, Y.; Jin, X.; Zhang, L. 2020. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications 526(1): 165-169.

Mbaveng, A.T.; Kuete, V. 2017. Zingiber officinale. s.l., Elsevier Inc. 627-639 pp.

Méndez, E.F.; Amaya, J.E. 2013. Fenología y producción de masa fresca y oleorresina de jengibre (Zingiber officinale r.) con diferente materia orgánica. Revista Ciencia y Tecnología 9(2): 181-196.

MINSA - Ministerio de Salud. Centro Nacional de Epidemiología, Prevención y Control de Enfermedades. 2020. Vigilancia, Prevención y Control del COVID-19. Disponible en: https://www.dge.gob.pe/portal/index.php?option=com_content&view=article&id=678

Mohd, S.H.; Makpol, S.; Abdul, N.A.; Das, S.; Wan, W.Z.; Mohd Y.A. 2008. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. CLINICS 63(6): 807-813.

Mpiana, P.T.; Ngbolua, K.N.; Tshibangu, D.S.T.; Kilembe, J.T.; Gbolo, B.Z.; Mwanangombo, D.T.; Inkoto, C.L.; Lengbiye, E.M.; Mbadiko, C.M.; Matondo, A.; Bongo, G.N.; Tshilanda, D.D. 2020. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chemical Physics Letters 754(May): 137751.

Musa, S. 2020. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now?. Arab Journal of Gastroenterology 21(1): 3-8.

Nogueira de Melo, G.A.; Grespan, R.; Pitelli, J.; Oliveira, T.; Leite, E.; Lopes, A.; Bersani-Amado, C.A.; Nakamura, R.K. 2011. Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro. Journal of Natural Medice 65: 241-246.

Ogbuewu, I.P.; Jiwuba, P.D.; Ezeokeke, C.T.; Uchegbu, M.C.; Okoli, I.C.; Iloeje, M.U. 2014. Evaluation of Phytochemical and Nutritional Composition of ginger rhizome powder. International Journal of Agriculture and Rural Development 17:1663-1670.

Ojewole, J. 2006. Analgesic, Antiinflammatory and Hypoglycaemic Effects of Ethanol Extract of Zingiber officinale (Roscoe) Rhizomes (Zingiberaceae) in Mice and Rats. Phytotherapy Research 20: 764-772.

Olubunmi, B.; Seun, F.; Funmilayo, T. 2013. Food Value of Two Varieties of Ginger (Zingiber officinale) Commonly Consumed in Nigeria. ISRN Nutrition 2013: 1-5.

Park, K.J.; Lee, H.H. 2005. In Vitro Activiral Activity of Aqueous Extracts from Korean Medicinal Plant Againts Influenza Virus Type A. Journal of Microbiology Biotechnology 15(5): 924-929.

Prasanna, K.D.; Gunathilake, P.; Vasantha, H.P. 2014. Inhibition of Human Low-Density Lipoprotein Oxidation In Vitro by Ginger Extracts. Journal of Medicinal Food 17(4): 424-431.

Rehman, R.; Akram, M.; Akhtar, N.; Jabeen, Q.; Shah, S.M.A. 2010. Zingiber officinale Roscoe (pharmacological activity). Journal of Medicinal Plant Research 5(3): 344-348.

Saedisomeolia, A.; Makhdoomi, M.; Abdolahi, M.; Sedighiyan, M.; Rangel, A.; Muench, G.; Zarezadeh, M.; Jafarieh, A.; Mohammadzadeh Honarvar, N. 2019. Mechanisms of action of ginger in nuclear factor-kappaB signaling pathways in diabetes. Journal of Herbal Medicine 16.

Saghazadeh, A.; Rezaei, N. 2020. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. International Immunopharmacology 84: 106560.

Sampoornam, S.S. 2017. Herbal inhibitors identified for renin and angiotensin converting enzymes by in silico structure-based methods. International Journal of Medical and Health Research 3(6): 88-92.

Sangwan, A.; Kawatra, A.; Sehgal, S. 2014. Nutritional composition of ginger powder prepared using various drying methods. Journal of Food Science and Technology 51(9): 2260-2262.

Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. 2003. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infectious Diseases 3(11): 722-727.

Schwertner, H.A.; Rios, D.C. 2007. High-performance liquid chromatographic analysis of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol in ginger-containing dietary supplements, spices, teas, and beverages. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 856(1-2): 41-47.

Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. 2015. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 117: 554-568.

Sheahan, T.P.; Sims, A.C.; Graham, R.L.; et al. 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine 9(396).

Sheahan, T.P.; Sims, A.C.; Leist, S.R.; et al. 2020. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications 11(1).

Shukla, A; Goud, V V.; Das, C. 2019. Antioxidant potential and nutritional compositions of selected ginger varieties found in Northeast India. Industrial Crops and Products 128(October 2018):167-176.

da Silveira, M.; Mota, E.F.; Gomes-Rochette, N.F.; Nunes-Pinheiro, D.C.S.; Nabavi, SM; de Melo, D.F. 2019. Ginger (Zingiber officinale Roscoe). Elsevier Inc. 235-239 pp.

Sinha, P.; Mostaghim, A.; Bielick, C.G.; Hamer, D.H.; Wetzler, L.; Bhadelia, N.; Fagan, M.; Linas, B.P.; Assoumou, S.A.; Michael, H.; Lin, N.H.; Cooper, E.R.; Brade, K.D.; Laura, F. 2020. Early administration of Interleukin-6 inhibitors for patients with severe Covid-19 disease is associated with decreased intubation, reduced mortality, and increased discharge. International Journal of Infectious Diseases 99: 28-33.

Sookkongwaree, K.; Geitmann, M.; Roengsumran, S.; Petsom, A.; Danielson, H. 2006. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 61(8): 717-721.

Srinivasan, K. 2017. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition 5(1): 18-28.

Stoilova, I.; Krastanov, A.; Stoyanova, A.; Denev, P.; Gargova, S. 2007. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry 102(3): 764-770.

Tao, Y.I.; Li, W.; Liang, W.; Van Breemen, R.B. 2009. Identification and quantification of gingerols and related compounds in ginger dietary supplements using high-performance liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry 57(21): 10014-10021.

Tóth, B.; Lantos, T.; Hegyi, P.; Viola, R.; et al. 2018. Ginger (Zingiber officinale): an alternative for the prevention of postoperative nausea and vomiting. A meta-analysis, Elsevier GmbH.

Trinidad, T.P.; Sagum, R.; de Leon, M.P.; Mallillin, A.C.; Borlagdan, M.P. 2012. Zingiber Officinale and Curcuma Longa as Potential Functional Foods/Ingredients. Food and Public Health 2(2): 1-4.

Ugwoke, C.E.C.; Nzekwe, U. 2016. Phytocvhemistry and Proximate Composition of ginger (Zingiber officinale). Journal of Pharmaceutical Sciences 7(5): 63462.

Vargas, V.N. 2014. Efecto antimicrobiano in vitro del extracto de Zingiber officinales (jengibre) obtenido por extracción con fluidos supercríticos. s.l., s.e. 1-119 pp.

Vásquez, O.; Alva, A.; Marreros, J. 2001. Extracción y caracterización del aceite esencial de jengibre (Zingiber officinale). Revista Amazónica de Investigación Alimentaria 1(1): 38-42.

Vipin, A.V.; Raksha, K.; Nawneet, K.; Anu, A.; Venkateswaran, G. 2017. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomedicine and Pharmacotherapy 91: 415-424.

Vutyavanich, T.; Kraisarin, T.; Ruangsri, R.-A. 2001. Ginger for Nausea and Vomiting in Pregnancy: Randomized, Double-Masked, Placebo-Controlled Trial. Obstetrics & Gynecology 97(4): 577-582.

Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; Mcguire, A.T.; Veesler, D.; Walls, A.C.; Park, Y.; Tortorici, M.A.; Wall, A.; Mcguire, A.T.; Veesler, D. 2020. Structure, Function, and Antigenicity of the SARS- Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell :1-12.

Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; Qiang, M.; Chen, Y. 2020. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv 165: 1-13.

Wang, L.; Wang, Y.; Ye, D.; Liu, Q. 2020. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. International Journal of Antimicrobial Agents 55(6):105948.

Weidner, MS; Sigwart, K. 2000. The safety of a ginger extract in the rat. Journal of Ethnopharmacology 73(3): 513-520.

Weidner, M.S.; Sigwart, K. 2001. Investigation of the teratogenic potential of a Zingiber officinale extract in the rat. Reproductive Toxicology 15(1): 75-80.

WHO - World Health Organization. 2020a. WHO Director-General opening remarks at the media briefing on COVID-19 - 11 March 2020. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

WHO - World Health Organization. 2020b. Coronavirus disease (COVID-19) pandemic. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

Wohlmuth, H.; Leach, D.N.; Smith, M.K.; Myers, S.P. 2005. Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). Journal of Agricultural and Food Chemistry 53(14): 5772-5778.

Yeh, H.; Chuang, C.; Chen, H.; Wan, C.; Chen, T.; Lin, L. 2014. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT - Food Science and Technology 55(1): 329-334.

Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; et al. 2020. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv :2020.01.30.927806.

Zhou, D.; Dai, S.M.; Tong, Q. 2020. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. Journal of Antimicrobial Chemotherapy 75(7): 1667-1670.

Zhu, N.; Zhang, D.; Wang, W.; Li, X.; et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 382(8): 727-733.

Zick, S.M.; Djuric, Z.; Ruffin, M.T.; Litzinger, A.J.; et al. 2008. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiology Biomarkers and Prevention 17(8):1930-1936.

Descargas

Publicado

2020-12-30

Cómo citar

Jorge-Montalvo, P., Vílchez-Perales, C., & Visitación-Figueroa, L. (2020). Propiedades farmacológicas del jengibre (Zingiber officinale) para la prevención y el tratamiento de COVID-19. Agroindustrial Science, 10(3), 329-338. https://doi.org/10.17268/agroind.sci.2020.03.16

Número

Sección

Artículo de Revisión