Efecto de la osmodeshidratación sobre el contenido de antocianinas y capacidad de rehidratación de arándanos (Vaccinium corymbosum L.) liofilizados

Autores/as

  • Hubert Arteaga Universidad Nacional de Trujillo
  • Mario Espinoza
  • Julio Aguilar
  • Elvia Gómez
  • Jhonatan Cabanillas
  • Miguel Santa

DOI:

https://doi.org/10.17268/10.17268/agroind.science.2015.02.09

Resumen

El objetivo de esta investigación fue evaluar el efecto de la osmodeshidratación como pretratamiento a la liofilización sobre el contenido de antocianinas en el arándano (Vaccinium corymbosum L.) y su capacidad de rehidratación. Se utilizó el diseño compuesto central rotacional (DCCR) con concentraciones de sacarosa de 40 a 60 °Brix y temperaturas de 30 a 50°C de la solución osmótica, totalizando 11 ensayos, los que tuvieron una duración de 4 horas. Los arándanos osmodeshidratados se congelaron con nitrógeno líquido (-196 °C) a presión atmosférica y se liofilizaron a condiciones de 0,22 mbar y -50 °C durante 24 horas; cuantificándose el contenido de antocianinas (mg cianidina-3-glucosido/L) y la capacidad de rehidratación (CR) en el arándano liofilizado. Los arándanos sometidos a una solución osmótica de 50 °Brix y 50 °C presentaron el mayor contenido de antocianinas 126,64 (mg cianidina-3-glucosido/L) en tanto con solución osmótica de 57 °Brix y 47 °C, se obtuvo el mayor porcentaje de rehidratación 69,15%, que es superior al 25,27% encontrado para el arándano fresco liofilizado. Los resultados sugieren que la aplicación de la deshidratación osmótica como pretratamiento a la liofilización es una tecnología que no favorece la retención de las antocianinas del arándano (Vaccinium corymbosum L.), debido a que ocasiona un alto porcentaje de pérdida de estos compuestos por lixiviación, sin embargo, representa una opción para obtener productos con una mayor capacidad de rehidratación luego de ser liofilizados.

 


Citas

Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. 2006. Freezedrying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliver Rev. 58 (15): 1688-1713.

Aguilera-Ortiz, M.; Reza-Vargas, M.; Chew-Madinaveitia, R.; Meza-Velázquez, J. 2011. Propiedades funcionales de las antocianinas. Revista de Ciencias Biológicas y de la Salud XIII: 16-22.

AOAC. 1997. Métodos oficiales de análisis. 16va. edición. Editorial AOAC. Internacional. Gaithersburg, Maryland, Estados Unidos de América.

Arroyo, J.; Arteaga, H.; Siche, R. 2010. Synergism between sodium chloride, sucrose and tricalcium phosphate in the osmotic dehydration of oca (Oxalis tuberosa) with and without chitosan coating. Scientia Agropecuaria 1(3-4): 197-206.

Bianchi, M.; Guarnaschelli, P. y Mascheroni, R. 2000. Transferencia de masa en deshidratación osmótica de frutas. Determinación experimental. La Plata, Argentina.

Buzeta, A. 1997. Chile: Berries para el 2000. Departamento Agroindustrial. Fundación Chile. Santiago, Chile.

Camire, E.; Chaovanalikit, A.; Dougherty, P.; Briggs, J. 2002. Blueberry and grape anthocyanins as breakfast cereal colorants. J. Food Sci. 67(1): 438-441.

Connor, A.; Luby, J.; Hancock, J.; Berkheimer, S. y Hanson, E. 2002a. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J. Agric. Food. Chem. 50 (4): 893-898.

Connor, A.; Luby, J.; Tong, C. 2002b. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Amer. Soc. Hort. Sci. 127 (1): 89-97.

Conway, J. 1983. Mass transfer considerations in the osmotic dehydration of apples. Canadian Institute Food Science and Technology Journal. 16 (1): 25-29.

Erle, U.; Schubert, H. 2001. Combined osmotic and microwave-vacuum dehydration of apples and strawberries. J Food Eng. 49 (2-3): 193-199.

Falade, K.; Igbeka, J.; Ayanwuyi, F. 2007. Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. J Food Eng. 80 (3): 979-985.

Fellows, P. 2007. Tecnología del procesado de los alimentos: Principios y Prácticas. Ed. Acribia. España. 708 pp.

Giovanelli, G.; Brambilla, A.; Rizzolo, A. y Sinelli, N. 2012. Effects of blanching pretreatment and sugar composition of the osmotic solution on physico-chemical, morphological and antioxidant characteristics of osmodehydrated blueberries (Vaccinium corymbosum L.). Food Research International. (49): 263-271.

Giovanelli, G.; Brambilla, A.; Sinelli, N. 2013. Effects of osmo-air dehydration treatments on chemical, antioxidant and morphological characteristics of blueberries. Food Science and Technology (54): 577-584.

Giusti, M.; Wrolstad, R. 2001. Anthocyanins. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current protocols in food analytical chemistry (R.E. Wrolstad ed.) p. F1.2.1–13. New York, USA: John Wiley & Sons.

Hakkinen, S.; Karenlampi, S.; Heinonen, I.; Mykkanen, H.; Torronen, A. 1999. Content of the flavonos-quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry (47): 2274-2279.

Hassimotto, N.; Vieira da Mota, R.; Cordenunsi, B.; Lajolo, F. 2008. Physico-chemical characteri-zation and bioactive compounds of blackberry fruits (Rubus sp.) grown. Journal of Food and Chemistry (28): 702-703.

Hou, D.; Kai, K.; Li, J.; Lin, S.; Terahara, N.; Wakamatsu, M.; Fuji, M.; Young, M.; Colburn, N. 2004. Anthocyanidins inhibit activator protein 1 activity and cell transformation: Structure-activity relationship and molecular mechanisms. Carcinogenesis 25: 29-36.

Hou, F.; Wang, S.; Hu, Y. 2003. Effects of noise on antioxidant enzymes of cochlea in guinea pigs. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 21(2): 121-123.

Ikoko, J. y Kuri, V. 2007. Osmotic pre-treatment effect on fat intake reduction and eating quality of deep-fried plantain. Food Chem. 102(2): 523-531.

Jamradloedluk, J.; Nathakaranakule, A.; Soponronnarit, S. y Prachayawarakorn, S. 2007. Influences of drying medium and temperature on drying kinetics and quality attributes of durian chip. Journal of Food Engineering 78(1): 198-205.

Jankowski, A.; Janlowska, B.; Niwdworok, J. 2000. The effect of anthocyanin dye from grapes on experimental diabetes. Folia Med Cracov. (41): 5-15.

Joseph, J.; Shuktt-Hale, B.; Denisova, N.; Bielinsk, D.; Martin, A.; McEwen, J.; Bickford, P. 1999. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci. (19): 8114-8121.

Kalt, W.; Ryan, D.; Duy, J.; Prior, R.; Ehlenfeldt, M.; Vander Kloet, S. 2001. Interspecific variation in anthocyanins, phenolic, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium Section cyanococcus spp.). Journal of Agricultural and Food Chemistry (49): 4761-4767.

Kaymark-Ertekin, E. 2000. Drying and rehydration kinetics of green and red peppers. Journal of Food Science 67(1): 168-175.

Kopjar, M.; Piližota, V. 2009. Copigmentation effect of phenolic compounds on red currant juice anthocyanins during storage. Croatian Journal of Food Science and Technology 1: 16-20.

Krokida, M. y Maroulis, Z. 2000. Quality changes during drying of food materials. In: Mujumdar, A.S. (Ed.). Drying technology in agriculture and food sciences. Enfield, NH. Science Publishers. 70-82.

Krokida, M.; Marinos-Kouris, D. 2003. Rehydration kinetics of dehydrated products. Journal of Food Engineering 57(1): 1-7.

Lazarides, H.; Mitrakas, G.; Matsos, K. 2007. Edible coating and counter-current product/solution contacting: A novel approach to monitoring solids uptake during osmotic dehydration of a model food system. Journal of Food Eng. 82 (2): 171-177.

Lazze, M.; Pizzala, R.; Savio, M.; Stivala, L.; Prosperi, E.; Bianchi, L. 2003. Anthocyanins project against DNA damage induced by tert-butyl-hidroperoxide in rat smooth muscle and hematoma cells. Mutat Res. 535: 103-115.

Lewicki, P. 1998. Effect of pre-drying treatment, drying and rehydration on plant tissue propertie: a review. Internat Journal of Food Properties 1(1): 1-22.

Lohachoompol, V.; Srzednicki, G. y Craske, J. 2004. The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. Journal of Biomedicine and Biotechnology 5: 248–252.

Marabi, A.; Dilak, C.; Shah, J.; Saguy, I. 2004. Kinetic of solids leaching during rehydration of particulate dry vegetables, Journal of Food Science 69: 3.

Marani, C.; Agnelli, M.; Mascheroni, R. 2007. Osmo-frozen fruits: mass transfer and quality evaluation. J Food Eng. 79 (4): 1122–1130.

Matsumoto, H.; Nakamura, Y.; Hirayama, M.; Yoshiki, Y.; Okubo, K. 2002. Antioxidant activity of black currant anthocyanin aglycons and their glycosides measured by chemiluminescence in a neutral pH region and in human plasma. J. Agric. Food Chem. 50(18): 5034-5037.

Mazur, B. y Borowska, E. 2007. The products from Vaccinium oxycoccus L. - phenolic compounds content and antioxidant properties. Bromatologia i Chemia Toksykologiczna 40: 239-243.

Moyer, R.; Hummer, K.; Finn, C.; Frei, B. y Wrolstad, R. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. Journal of Agricultural and Food Chemistry 50: 519-525.

Meda, L. y Ratti, C. 2005. Rehydration of freeze-dried strawberries at varying temperatures. Journal of Food Process and Engineering 28: 233-246.

Oh, Y.; Lee, J.; Yoon, S.; Oh, C.; Choi, D.; Choe, E.; Jung, M. 2008. Characterization and quantification of anthocyanins in grape juices obtained from the grapes cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. J. Food Sci. 73(5): 378-389.

Oh, J.; Kim, S.; Imm, J. 2006. Antioxidative effect of crude anthocyanins in water-in-oil microemulsion system. Food Science Biotechnology 15: 283-288.

Osorio, C.; Franco, M.; Castaño, M.; González-Miret, M.; Heredia, F. y Morales, A. 2007. Colour and flavour changes during osmotic dehydration of fruits. Innovative Food Science & Emerging Technologies 8: 353–359.

Pani, P.; Leva, A.; Riva, M.; Maestrelli, A.; Torreggiani, D. 2008. Influence of an osmotic pre-treatment on structure-property relationships of air-dehydrated tomato slices. J Food Eng. 86 (1): 105–112.

Prior, R.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of vaccinium species. Journal of Agricultural and Food Chemistry 46: 2686-2693.

Prior, R.; Lazarus, S.; Cao, G.; Muccitelli, H. y Hammerstone, J. 2001. Identification of procyanidins and anthocyanins in blueberries and cranberry (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry 49: 1270-1276.

Ramírez-Tortosa, C.; Andersen, O.; Gardener, P.; Morrice, P.; Wood, S.; Duthie, S.; Collins, A.; Duthie, G. 2001. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic. Biol. Med. 31: 1033-1037.

Ramaswamy, H. y Marcotte, M. 2006. Food processing principles and applications. CRC Press, Taylor & Francis Group, Boca Raton, F.L. pp. 233-277.

Rossi, M.; Giussani, E.; Morelli, R.; Lo Scalzo, R.; Nani, R. y Torreggiani, D. 2003. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International 36: 999–1005.

Ríos, M.; Márquez, C.; Ciro, H. 2005. Deshidratación osmótica de papaya hawaiana (Carica Papaya L.) en cuatro agentes edulcorantes. Revista Facultad Nacional de Agronomía-Medellín 58 (2): 2989-3002.

Scibisz, I. y Mitek, M. 2009. Effect of processing and storage conditions on phenolic compounds and compounds and antioxidant capacity of high bush blueberry jams. Polish J. Food Nutri. SCi. 59: 45-52.

Shui, G. y Leong, L. 2006. Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem. 97 (2): 277-284.

Skrede, G.; Wrolstad, R.; y Durst, R. 2000. Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). Journal of Food Science 65: 357-364.

Song, C.; Nam, J.; Kim, C.; Ro, S. 2005. Temperature distribution in a vial during freeze-drying of skim milk. J Food Eng. 67 (4): 467-475.

Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. 2003. Dietary cyaniding 3-o-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. Journal of Nutrition 133: 2125-2130.

Vega, A. y Lemus, R. 2006. Modelado de la cinética de secado de la papaya chilena (Vasconcellea pubescens). Rev Información Technology 27(3): 23-31.

Wang, S. y Jiao, H. 2000. Scavening capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agriculture Food Chem. 48: 5677-5684.

Wills, R.; Lee, T.; McGlasson, W.; Hall, E.; Gtaham, D. 1984. Fisiología y manipulación de frutas y hortalizas post- recolección. Editorial Acribia S.A. Zaragoza, España.

Wrolstad, E.; Culbertson, D.; Nagaki, A. 1980. Sugars and Volatile acids of blackberries. Journal Agriculture of Food Chemistry 28: 553-558.

Youdim, M.; Gassen, M.; Gross, A.; Mandel, S.; Grunblatt, E. 2000. Iron chelating, antioxidant and cytoprotective properties of dopamine receptor agonist, apomorphine. Journal of Neural Transm Suppl. 58: 83-96.

Descargas

Publicado

2016-01-13

Cómo citar

Arteaga, H., Espinoza, M., Aguilar, J., Gómez, E., Cabanillas, J., & Santa, M. (2016). Efecto de la osmodeshidratación sobre el contenido de antocianinas y capacidad de rehidratación de arándanos (Vaccinium corymbosum L.) liofilizados. Agroindustrial Science, 5(2), 167-175. https://doi.org/10.17268/10.17268/agroind.science.2015.02.09

Número

Sección

Artículos de investigación

Artículos más leídos del mismo autor/a