Algorítmo para la Ecuación de Difusión en Estado Estacionario 2D usando el Método Mimético en Diferencias Finitas.

Autores

DOI:

https://doi.org/10.17268/sel.mat.2014.01.04

Palavras-chave:

Algoritmo Mimético, Gradiente Mimético, Divergencia Mimética.

Resumo

El objetivo principal de este trabajo es la descripción e investigación de un nuevo algoritmo del esquema de diferencias finitas miméticas para resolver la ecuación diferencial parcial elíptica o también conocida como la ecuación estacionaria.
El nuevo algoritmo se formula para una rejilla del cuadrado unitario, el cual nos proporciona
la solución numérica al problema planteado así también como el error de aproximación entre la solución exacta y la aproximada.
Este nuevo algoritmo se deriva usando el esquema de diferencias finitas miméticas, una
idea clave en la obtención de este método, proponer discretizaciones de los operadores
diferenciales fundamentales de la física matemática (divergencia y gradiente), satisfaciendo
o mimetizando el teorema de la divergencia a nivel discreto, la cual es responsable
de cumplir las propiedades conservativas del medio continuo.

Referências

K. W. Morton and D. F. Mayers. “Numeral Solution of Partial Differential Equations”, CRCI Press, Cambridge, UK, 1994.

M. Shashkov. “Conservative Finite-Difference Methods on General Grids, Symbolic and Numeric Computation Series”, CRC Press, Boca Raton, Fla, USA, 2001.

J. E. Castillo, J. M. Hyman, M. Shashkov, and S. Steinberg “Fourth-and sixth-order conservative finite difference approximations of the divergence and gradient, Applied Numeral Mathematics”, vol.37, no.1-2,pp. 171-187, 2001.

J. E. Castillo and R. D. Grone. “A matrix analysis approach to higher-order approximations for divergence and gradients satisfyng a global conversation law. SIAM Journal on Matrix Analysis and applications”, vol. 25, no. 1, pp. 128-142, 2003.

J. E. Castillo and M. Yasuda. “Linear systems arising for second-order mimetic divergence and gradients discretizations. Journal of Mathematical Modelling and Algorithms”, vol. 4, no. 1, pp. 67-82, 2005 2011.

M. Freites-Villegas, J. M. Guevara-Jordan, O. R. Rojas, J. E. Castillo, and S. Rojas. “A mimetic finite difference scheme for solving the steady state diffusion equation with singular sources. En Simulación Numérica y Modelado Computacional. Proceedings of the 7th International Congress of Numeral Methods in Engineering

and Applied Science”, J. Rojo, M. J. Torres, and M. Cerrolaza, Eds., pp. 25-32, San Cristóbal, Venezuela, 2004.

D. L. Powers. “Boundary Value Problems”. Jhon Wiley & Sons, New York, NY, USA, 3rd edition, 1987.

J. M. Guevara-Jordan, S. Rojas, M. Freites-Villegas, and J. E. Castillo. “A new second order finite difference conservative scheme, Divulgaciones Matematicas”, vol.13, no. 2, pp. 107-122, 2005.

J. W. Thomas. “Numerical Partial Differential Equations: Finite Difference Methods”, vol. 22 of Texts in applied Mathematics, Springer, New York, NY, USA, 3rd edition, 1995.

J. E. Castillo and M. Yasuda. “A comparison of two matrix operador formulations for mimetic divergente and gradient discretizations”, in Parallel and Distributed Processing Techniques and Applications, H. R. Arabnia and Y. Mun, eds., vol. 3, CSREA Press. Las Vegas, 2003, pp. 1281-1285.

J. Arteaga - Arispe and J.M. Guevara Jordan. “A conservative finite difference scheme for static diffusion equation”, Department of Mathematics, University Center of Venezuela.

V. Huy and J. Castillo. “Mimetic discretization of elliptic Pde wiht full tensor Coefficients”, Departament of Computer science, San Diego state University, San Diego, CA 92182, USA.

Publicado

2015-04-01

Como Citar

Rubio López, F., & Gonzales Herrera, M. (2015). Algorítmo para la Ecuación de Difusión en Estado Estacionario 2D usando el Método Mimético en Diferencias Finitas. Selecciones Matemáticas, 1(01). https://doi.org/10.17268/sel.mat.2014.01.04

Edição

Seção

Articles