Conformable fractional derivatives and applications to Newtonian dynamic and cooling body law

Autores

  • Pedro Abrahan Parraga Cedeño Instituto de Posgrado, Universidad Técnica de Manabí, Manabí, Ecuador.
  • Miguel J. Vivas-Cortez Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
  • Oswaldo José Larreal Departamento de Matemáticas, Universidad Técnica de Manabí, Manabí, Ecuador.

DOI:

https://doi.org/10.17268/sel.mat.2022.01.03

Palavras-chave:

Fractional derivatives, Nápoles' fractional derivative, free fall of bodies, cooling bodies

Resumo

This article presents a rigorous review of the conformable fractional derivative given by J. E. Napoles in [11], studying its classical properties, as a differential operator. Likewise, applications are given to Physics, specifically to the free fall of bodies and Newton’s law of cooling.

Referências

Abdeljawad T, On Conformable Fractional Calculus. J. of Computational and Applied Mathematics. 2015M; 279:57-66.

Atangana A. Derivative with a New Parameter: Theory, Methods and Applications. London: Academic Press; 2016.

Atangana A, Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013; 2013(1):1-7.

Atangana A, Kilicman A. A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities. Math. Probl. Eng. 2013; 2013(1):1-7.

Hernández Hernández JE, Vivas-Cortez M. Hermite-Hadamard inequalities type for Raina’s fractional integral operator using n-convex functions. Revista Matemática: Teoría y Aplicaciones. 2019; 26(1):1-19.

Hernández Hernández J E, Vivas-Cortez M. On a Hardy’s inequality for a fractional integral operator. Annals of the University of Craiova, Math. and Computer Science Series 2018; 45(2):232-242.

Jackson FH. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908; 46:253-281.

Kanno R. Representation of random walk in fractal space-time. Phys. A. 1998; 248:165-175.

Katz VJ. Ideas of calculus in Islam and India. Math. Mag. 1995; 68(3):163-174.

Khalil R, Al-Horani M, Yousef A. Sababheh M. A new definition of fractional derivative. J. of Computational and Applied Math. 2014; 264:65-70.

Guzmán PM, Langton G, Lugo-Motta L, Medina J, N´apoles-Vald´es JE. A new definition of a fractional derivative of local type. J. Math. Anal. 2018; 9:88-96.

Riemman JL. Versuch einer allgemeinen Auffassung der Integration und Differentiation. In: Weber H. Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass. Dover: Dover Publications; 1953. p. 353.

Vivas-Cortez M, Velasco J, Hernández Hernández JE. Certain new results on the Khalil conformable fractional derivative. Matua, Revista de la Universidad del Atlántico 2020; 7(1):1-8.

Vivas-Cortez M, Kashuri A, Hernández Hernández JE. Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions. Symmetry 2020; 12:1-17.

Vivas-Cortez M, Fleitas A, Guzman PM, Nápoles JE, Rosales JJ. Newton’s Law of cooling with generalized conformable derivatives. symetruy. 2021; 13(6)- 1093.

Vivas-Cortez M, Nápoles-Valdés J, Hernández Hernández JE, Velasco J, Larreal O. On Non Conformable Fractional Laplace Transform. Appl. Math. Inf. Sci. 2021; 15(4):403-409.

Umarov S, Steinberg S. Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Z. Anal. Anwend. 2009; 28(4):431-450.

Downloads

Publicado

2022-07-27

Como Citar

Parraga Cedeño, P. A., Vivas-Cortez, M. J., & Larreal, O. J. (2022). Conformable fractional derivatives and applications to Newtonian dynamic and cooling body law. Selecciones Matemáticas, 9(01), 34 - 43. https://doi.org/10.17268/sel.mat.2022.01.03

Edição

Seção

Articles