The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
DOI:
https://doi.org/10.17268/sel.mat.2024.02.11Palabras clave:
Calculus of variations, functional optimization, partial differential equationsResumen
Calculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differential geometry. In PDEs, calculus of variations provides methods to find functions that minimize energy functionals, leading to solutions of various physical problems. In differential geometry, it helps understand the properties of curves and surfaces, such as geodesics, by minimizing arc-length functionals. This paper explores the intrinsic connections between these areas, highlighting key principles such as the Euler-Lagrange equation, Ekeland’s variational principle, and the Mountain Pass theorem, and their applications in solving PDEs
and understanding geometrical structures.
Citas
Alexandru Kristaly VDR, Varga C. Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative
Analysis of Nonlinear Equations and Unilateral Problems. Cambridge: Cambridge University Press; 2009.
Evans LC. Partial Differential Equations. Graduate Studies in Mathematics. vol. 19. American Mathematical Society; 2010.
Ambrosetti A, Rabinowitz PH. Dual variational methods in critical point theory and applications. Journal of Functional
Analysis. 1973;14(4):349-81. Available from: https://www.sciencedirect.com/science/article/pii/
Do Carmo MP. Differential Geometry of Curves and Surfaces. New Jersey: Prentice Hall; 1976.
Goldstein Herbert CPP, Safko JL. Classical Mechanics. 3rd ed. Addison-Wesley; 2001.
Lanczos C. The Variational Principles of Mechanics. Dover Publications; 1986.
Ekeland I. Convexity Methods in Hamiltonian Mechanics. Springer; 1990.
Aubin JP, Ekeland I. Applied Nonlinear Analysis. Wiley-Interscience; 1984.
Palais RS, Smale S. A Generalized Morse Theory. Bulletin of the American Mathematical Society. 1964;70(2):165-72.
Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer;
Ambrosetti A, Rabinowitz PH. Dual Variational Methods in Critical Point Theory and Applications. Journal of Functional
Analysis. 1973;14(4):349-81.
Palais RS. The principle of symmetric criticality. Communications in Mathematical Physics. 1979;69:19-30. Available from:
https://doi.org/10.1007/BF01941322.
Baer C. Symmetric Criticality in Riemannian Geometry. Journal of Mathematical Physics. 2004;40(3):2247-71.
Do Carmo M. Riemannian Geometry. Springer; 1992.
Klingenberg W. A Course in Differential Geometry. Springer; 1978.
Milnor J. Morse Theory. Princeton University Press; 1963.
Arnol´d VI. Mathematical Methods of Classical Mechanics. Springer; 1989.
Zeidler E. Nonlinear Functional Analysis and Its Applications. Springer; 1990.
Spivak M. A Comprehensive Introduction to Differential Geometry. vol. 1. Publish or Perish; 1999.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative CommonsAtribución 4.0 Internacional (CC BY 4.0) , que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado(Consultar: efecto del acceso abierto).