Simulation of the behaviour of covid-19 with the stochastic SIRD model: case of Peru

Autores/as

  • Obidio Rubio Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Dennis Quispe Sanchez Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Edmundo Vergara-Moreno Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Franco Rubio López Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2023.01.08

Palabras clave:

COVID-19 pandemic, deterministic and stochastic model, SIRD model, simulation

Resumen

In this work, we simulate the dynamics of COVID-19 pandemic using a deterministic SIRD model and its stochastic SIRD model version. The model is used under a closed population of 32 625 984 from the peruvian country, where the coefficient of the transmission rate, the recovery rate, the dead rate and the initial condition are given for the data taken from the initial days reported by the first disease people in Peru.

Citas

Vergara, E. et al. Modelo básico epidemiológico SIR para el COVID-19: caso las Regiones del Perú. Selecciones Matemáticas. 2020; 7(1) 151:161.

Ministerio de Salud, Alerta Epidemiológica Código: AE-015-2020. Disponible en https://cdn.www.gob.pe/uploads/ document/file/582356/AE015.pdf.

El Koufi A, El Koufi N. Stochastic differential equation model of Covid-19: Case study of Pakistan. Results in Physics. 2022; 34:105218.

Jianhai Baoa, Xuerong Maob, Geroge Yinc, Chenggui Yuana. Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Analysis. 2011; 74:6601–6616.

Gao H, Wang y. Stochastic mutualism model under regime switching with Lévy jumps. Physica A. 2019; 515:355-75.

Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 1927; 115:700-721. Disponible en https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1927.0118.

INEI. PERÚ, Estimaciones y proyecciones de población por departamento, provincia y Distrito, 2018-2020. Edit. Digital. 2020. Disponible en https://proyectos.inei.gob.pe/Est/Lib0846.

Daqing J, Jiajia Y, Chunyan J, Ningzhong S. Asymptotic behavior of global positive solution to a stochastic SIR model. Math. and Comp. Modelling. 2011; 54:221–232.

Baccouch M, Temimi H, Ben-Romdhane M. A discontinuous Galerkin method for systems of stochastic differential equations with applications to population biology, finance, and physics. J. of Comput. and App. Math. 2021; 388:113297.

Rubio, O. La integral de lto y ecuaciones diferenciales estocásticas[Tesis de Maestria], Universidad Nacional de Ingeniería; Perú, 1990.

Zhou Y, Zhang W, Yuan S. Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput. 2014; 244:118–131.

Desmond J. Higham. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Review. 2001; 43(3):525-546.

Descargas

Publicado

2023-06-14

Cómo citar

Rubio, O., Quispe Sanchez, D., Vergara-Moreno, E., & Rubio López, F. (2023). Simulation of the behaviour of covid-19 with the stochastic SIRD model: case of Peru. Selecciones Matemáticas, 10(01), 81 - 89. https://doi.org/10.17268/sel.mat.2023.01.08