ESTIMADOR SIMPLE Y FUERTEMENTE CONSISTENTE DE DISTRIBUCIONES ESTABLES

Autores/as

  • Cira Guevara Otiniano
  • Thiago Sousa

DOI:

https://doi.org/10.17268/sel.mat.2016.01.04

Palabras clave:

Distribución Lévy estable, Transformada de Mellin, Estimador de escala

Resumen

Distribuciones estables son utilizadas extensivamente para analizar rendimientos de activos financieros, tales como tasas de cambio y precios de acciones. En este trabajo proponemos un estimador simple y fuertemente consistente para el parámetro de escala de distribuciones estables simétricas de Lévy. La ventaja de ese estimador es que el tiempo de su cálculo computacional es mínimo por lo que puede ser util para inicializar metodos computacionales intensivos tales como el procedimiento de máxima verosimilitud. Com muestras aleatorias de tamaño n probamos la eficacia de los estimadores a través de el método de Monte Carlo. Incluimos también aplicaciones para tres conjuntos de datos reales. .

Citas

C.Y. D. Chang, G. O. Cira, M. Raul, N. R. Pushpa , Levy Flight Approximations for Scaled Transformations of Random Walks, Computational Statistics and Data Analysis, 51(2007), pp 6343-6354.

W. Feller, An Introduction to Probability Theory and its Applications II, 2nd edition, Wiley, USA, (1971).

P. Lévy , Calcul des Probabilites, Gauthier Villars, (1925).

I. A. Koutrouvelis , Regression-type estimation of the parameters of stable laws, Journal of the American

Statistical Association, 75(1980), pp 918-928.

Mainari, G. Pagnini (2008), Mellin Barnes integral for stable distributions and their convolutions, Fractional

Calculus and Applied Analysis, 11(2008), pp 443-456.

B.B. Mandelbrot , The variation of certain speculative prices, Journal of Business 36(1963), pp 394-419.

J. P. Nolan , Maximum likelihood estimation of stable parameters. In O. E. Barndorff-Nielsen et. al., Levy

Processes: Theory and Applications, Boston: Birkhauser, 2001, pp 379-400 .

S. Rachev, Handbook of Heavy-tailed Distributions in Finance, North Holland, (2003).

G. Samarodnistky, M. Taqqu , Stable Non-Gaussian Random Processes, Chapman and Hall/CRC- Londom, UK, 1994.

W. R. Schneider, Stable distributions: Fox function representation and generalization, In: S. Albeverio, G.Casati and D. Merlini (Editors), Stochastic Processes in Classical and Quantum Systems, SpringerVerlag, Berlin-Heidelberg (1986), pp 497-511.

S. Borak, W. Hardle, R. Weron, Stable distributions, Economic Risk. Berlin, 2005.

V. M. Zolotarev, One-Dimensional Stable Distributions, American Mathematical Society, (1986).

Descargas

Publicado

2016-06-30

Cómo citar

Guevara Otiniano, C., & Sousa, T. (2016). ESTIMADOR SIMPLE Y FUERTEMENTE CONSISTENTE DE DISTRIBUCIONES ESTABLES. Selecciones Matemáticas, 3(01), 25-31. https://doi.org/10.17268/sel.mat.2016.01.04

Número

Sección

Articles