NUMERICAL ANALYSIS OF AN INVERSE PROBLEM ORIGINATED IN PHENOMENON OF POLLUTION AIR URBAN

Authors

  • Anibal Coronel
  • Ian Hess

DOI:

https://doi.org/10.17268/sel.mat.2016.02.02

Keywords:

Poincare-Perron problem, asymptotic behavior, Riccati type equations

Abstract

This paper presents the calibration study of a two - dimensional mathematical model for the problem of urban air pollution. It is mainly assumed that air pollution is aected by wind convection, difusion and chemical reactions of pollutants. Consequently, a convection-diusion-reaction equation is obtained as a direct problem. In the inverse problem, the determination of the diusion is analyzed,
assuming that one has an observation of the pollutants in a nite time. To solve it numerically the nite volume method is used, the least squares function is considered as cost function and the gradient is calculated with the sensitivity method.

References

M. Afif, ; B. Amaziane, Convergence of nite volume schemes for a degenerate convection-diusion equation arising in ow in porous media. Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 46, 5265-5286.

M. Afif, ; B. Amaziane, Numerical simulation of two-phase ow through heterogeneous porous media. Inter-national Conference on Numerical Algorithms, Vol. II (Marrakesh, 2001). Numer. Algorithms 34 (2003),

no. 2-4, 117-125.

M. Afif and B. Amazine, On the convergence of nite volume schemes for one-dimensional two-phase ow in porous media. J. Comput. Appl. Math., 145 (2002), pp. 31-48.

I. Allegrini, F. De Santis, Urban air pollution: monitoring and control strategies, Volume 8 of NATO ASI series: Environment, Springer-Verlag, 1996.

L. J. Alvarez-Vazquez, ; N. Garca-Chan; A. Martnez; M. E. Vazquez-Mendez, An application of interactive multi-criteria optimization to air pollution control. Optimization 64(6), (2015), 1367-1380.

R. Burger , A. Coronel and M. Sepulveda, A semi-implicit monotone dierence scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation

processes Math. Comp., 75 (2006), 91-112.

R. Burger, A. Coronel and M. Sepulveda, A numerical descent method for an Inverse problem of a scalar conservation law modelling sedimentation Numerical Mathematics and Advanced Applications:

Proceedings ENUMATH 2007 (K. Kunish, G. Of and O. Steinbach, eds.), pp. 225-232, Springer Verlag, 2008.

I. Hess, Análisis numérico de un problema inverso originado en el fenomeno de contaminacion aérea urbana, Tesis de magister, Universidad del Bio-Bio, Chile, 2016.

P. Holnicki, A. Kaluszko, M. Kurowski, R. Ostrowski, and A. Zochowski. An urban-scale computer model for short-term prediction of air pollution. Archiwum Automatyki i Telemechaniki, XXXI(1-2):51-71,

S. Ikeda; Y. Nakamori; Y. Sawaragi. A measure of obtaining representative pointwise source and its availability for air pollution control. Internat. J. Systems Sci. 8(12), (1977), 1429-1440.

M. Z. Jacobson. Fundamentals of Atmospheric Modeling. Cambridge University Press, Cambridge, 1999.

S. Omatu and K. Matumoto. Distributed parameter identication by regularization and its application to prediction of air pollution. International Journal of Systems Science, 22(10):2001-2012, 1991.

S. Omatu and K. Matumoto. Parameter identication for distributed systems and its application to air pollution estimation. International Journal of Systems Science, 22(10):1993-2000, 1991.

S. Omatu and J. H. Seinfeld. Distributed Parameter Systems: Theory and Applications. Oxford Mathematical Monographs. Oxford University Press, New York, 1989.

M. Oprea. A case study of knowledge modelling in an air pollution control decision support system. AI Commun. 18(4), (2005), 293-303.

A.I.F Vaz; E. C. Ferreira. Air pollution control with semi-innite programming. Appl. Math. Model. 33(4), (2009), 1957-1969.

Published

2016-12-11

How to Cite

Coronel, A., & Hess, I. (2016). NUMERICAL ANALYSIS OF AN INVERSE PROBLEM ORIGINATED IN PHENOMENON OF POLLUTION AIR URBAN. Selecciones Matemáticas, 3(02), 71-75. https://doi.org/10.17268/sel.mat.2016.02.02