CONSTRUCCIÓN DE UNA FUNCIÓN POLINÓMICA A PARTIR DE LOS PUNTOS FIJOS DADOS PREVIAMENTE
DOI:
https://doi.org/10.17268/sel.mat.2015.01.06Keywords:
Polinomios, punto fijo, estabilidad, atractor, repelenteAbstract
En este trabajo se muestra la construcción de una función polinomial de grado n, dando previamente un conjunto de n puntos , los cuales serán puntos fijos de dicha función. Este estudio aborda el problema inverso en el caso polinomial; pues en el sentido clásico se tiene a priori una función; y de allí se hace el estudio sobre la existencia de puntos fijos. Además, se estudia el comportamiento de los puntos fijos a través del análisis de la estabilidad, a partir del uso de un parámetro.References
Feirgenbaum, Mitchel J. Universal Behavior in Nonlinear Systems. The Alamos Science, summer 1980.
R. M. May, Biological populations with non-overlapping generations: stable points, stable cycles, and chaos. Science, vol. 186, no. 4164, pp. 645–647, 1974.
R.M.May, Simple mathematical model swith very complicated dynamics. Nature, vol. 261, Nro. 5560, pp. 459–467.1976.
Edward Lorenz. The problem of deducing the climate from the governing equations. En: Tellus 16 (1964), pp. 1-11.
Joel L. Schi. Cellular Automata: A Discrete View of the World. Wiley & Sons, 2008.
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.