APROXIMACIÓN DE FUNCIONES CONTINUAS CON RANGO PRE-COMPACTO

Authors

  • Esptiben Rojas Bernilla

DOI:

https://doi.org/10.17268/sel.mat.2015.01.02

Keywords:

Análisis, Topología, Aproximación

Abstract

Es fundamental en teora de aproximacion, establecer condiciones para pasar de la convergencia puntual a la convergencia uniforme de funciones en ese sentido Hernandez [23] establecio algunos resultados
relativos al problema de aproximar uniformemente funciones continuas con rango pre-compacto. En este trabajo daremos algunos nuevos resultados al respecto, estableciendo el concepto de A− separacion debil a F, donde A ⊆ C(X) y F ∈ C(X,E).

References

F. Anderson. Approximation in systems of real-valued continuous functions.Trans.Amer.Math.Soc. 103 (1962) 249-271.

Bartle, Robert G. The Elements of Real Analysis, Segunda Edición, New York,Editorial Wiley,(1976),90-192,315-346.

E. Bishop. A generalization of the Stone-Weierstrass Theorem,Pacific J.Math.J.11 (1961).777-783.

R.L.Blair. Extensions of Lebesgue sets and real - valued functions, Czechoslovak Math.J. 31 (1981). 63-74.

J.Blasco, L.Molto. On the uniform clasure of a linear space of bounded real-valued funtionsAnnali di Matematica Pura ed Applicata 134 (4)1983, 233-239.

J.Blasco. Hausdorff compactification and Lebesgue set. Topology and its Application. 15 (1983) 111-117.

J.Blasco. Conjuntos de Lebesgue y compactaciones de un espacio topologico.Rev. Real Acad. de Ciencias Exactas, Fisicas y Naturales de Madrid. 78 (1984) 295-200.

J.Blasco. Complete bases and Wallman real compactification. Proc.Amer.Soc. 75 (1979),114-117.

B.Brosowski; F.Deutsch. An Elementary Proof of the Stone-Weierstrass Theorem.Proceedings of the American Mathematical Society,Vol 81, Na1 (1981),89-92.

R.B.Burkel. Bishop’s Stone-Weierstrass Theorem, amer.Math.Monthly 91 (1984). 22-32.

T.Carleman. Sur un Théoreme de Weierstrass.1927.

Jean-Etienne Rombaldi. Sur les theoremes de Stone-Weierstrass et de Korovkin- 9 junio 2003.

Carothes,N.L. A Short Course on Aproximation Theory, Department of Mathematics and Statistics, Bowling green State University,(1998).

D.A.Edwards. A Short proof of a Theorem of Machado, Math.Proc. Cambridge Philos.Soc.99 (1986), 111-114.

R. Engelking. General Topology, Polish Scientific, Warszawa 1977.

M.Estrada. Los Teoremas de Ascoli y Stone-Weiertrass, su aplicación en el Análisis Funcional.(1998) Tesis de Licenciatura-UNPRG.

J.Galindo, M. Sanchis. Stone-Weierstrass Type Theorems For Group-Valued Fuctions.

J. Gomez. Algebra de Funciones Continuas Intermedias entre C*(X) y C(X). Tesis Doctoral. Universidad de Valladolid.1997.

L.Gillman and M.Jerison. Rings of continuous functions, Van Nostrand, Princenton.1960.

A.Hager. On inverse-closed subalgebras de C(X). Proc. London. Math. Soc.III Ser.19 (1969) 233-257.

A. Hager. An approximation tecnique for real-valued functions, General Topoly and its Applications, 1 1971, 127-133.

M.Henriksen. Unsolved problems on algebraic aspects de C(X).Lecture Notes in Pure and Appl.Math, 95,Dekker, New York,1985.

S. Hernández. Approximation and extension de continuos fuctions.

S. Hernández. Algebra de Funciones Continuas Tesis Doctoral . Universidad de Valencia. 1983.

E. Hewitt. Certain representation of the Weierstrass approximation theorem, Ducke Math., 14 (1947), 419-427.

R.Jewett. A Variation on the Stone-Weiertrass Theorem.Proceedings of the American Mathematical Society,Vol 14, Na5 (1963),690-693.

S.Kakutani. Concrete representation of abstract (M)-space,Annals of Math., 42 (1941), 994-1024.

S.Machado. On Bishop’s generalization of the Stone-Weierstrass Theorem, Indag.Math.39 (1977).218-224.

S.Mrówka. On some approximation Theorems, Nieuw Archief voor Wiskunde,XVI (1968), 94-111.

F.Montalvo. Uniform approximation theorems for real-valued continuous function, Topology and its Application 45(1992)145-155 North-Holland.

F.Montalvo y M.I.Garrido. On Some Generalizations Of The Kakutani-Stone And Stone-Weierstrass Theorems,Acta Math.Hung.(1993), 199-208.

F. Montalvo Y M.I. Garrido. Generation of Uniformly Closed Algebras of FunctionsPositivity, 8 2005, 8195.

F.Montalvo Y M.I.Garrido. Algebraic Properties of the Uniform Closure of Space of Continuous Function Annals of the New York . Academy of Sciences. Volumen 788,(1996)

F.Montalvo y M.I. Garrido. Uniform approximation theorems for real-valued continuous functions.Topology and its Application 45 (1992)145-155.North-Holland.

F.Montalvo y M.I. Garrido. Generation of the uniformly continuous functions.Topology and its Application, 137 2004,

M.I.Garrido. Aproximación Uniforme en Espacios de Funciones Continuas, Departamento de Matemáticas - Universidad de Extremadura (1990)

A.Pinkus. Weierstrass and Approximation Theory

A.Pinkus. Density in Approximation Theory-4 julio-2004.

A.Pinkus. Density Methods And Results in Approximation Theory.Orlicz Centenary Volume. Banach Center Publication, Volume 64.(2004)

J.Prolla. Weirstrass-Stone the theorem,Velag Peter Lang GmbH ,Frankfurt am Main 1993

T.J. Ransford. One Short elementary proof of the Stone-Weierstrass - Bishop Theorem , Math, Proc. Cambridge Philos.Soc. 96(1984), 309-311.

E.Rojas. Aproximación en Espacios de Funciones Continuas, Trabajo de Investigación -DEA, Universidad Jaume I,Castellón (2006).

W. Rudin. Análisis Funcional Editorial Reverté, S.A.-1979.

Y. Sterfeld. Dense Subgroups of C(K) Stone-Weierstrass Type Theorems for GroupsConstructive Approximation. 6:339-351 (1990). Springer- Verlag New York Inc.

Y. Sternfeld, Y. Weit. An Approximation theorem for vector-valued function. In Geometric Aspects Functional Analysis Lecture Notes in Mathematics. Belin: Springer-Verlag - 1998.

M.H.Stone, A generalized Weierstrass approximation theoremMath. Magazine,21 (1948),167-184, 237-254.

K.Weierstrass. Sur la possibilité dúne représentation analytique des fonctions dites arbitraires dúne variable

réelle.J.Math.Pure et Appl. 2 (1886) 115-138.

Published

2016-10-05

How to Cite

Rojas Bernilla, E. (2016). APROXIMACIÓN DE FUNCIONES CONTINUAS CON RANGO PRE-COMPACTO. Selecciones Matemáticas, 2(01), 20-24. https://doi.org/10.17268/sel.mat.2015.01.02