A comprehensive review of the characterization of real numbers

Authors

  • Víctor Arturo Martínez León Universidade Federal da Integracao Latino-Americana (UNILA), Instituto Latino-Americano de Ciencias da Vida e da Natureza (ILACVN), Foz do Iguacu-Paraná, Brasil.
  • Rodrigo Bloot Universidade Federal da Integracao Latino-Americana (UNILA), Instituto Latino-Americano de Ciencias da Vida e da Natureza (ILACVN), Foz do Iguacu-Paraná, Brasil.
  • Ana Letícia de Oliveira Secretaria de Educacao do Estado do Paraná, Foz do Iguacu-Paraná, Brasil.

DOI:

https://doi.org/10.17268/sel.mat.2024.02.08

Keywords:

Supremum axiom, Cauchy sequences, complete ordered field, Archimedean field

Abstract

The real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In the present work, we present a comprehensive review on the construction and characterization of the real numbers field. The presentation focuses on the construction through Cauchy sequences of rational numbers. The notion of completeness is delimited differently from completeness when Dedekind’s cut construction is used. The results indicate Q and R Archimedean as a necessary condition for these two notions of completeness to be equivalent.

To illustrate this, inspired by the work of Leon W. Cohen and Gertrude Ehrlich, we present an example of a Cauchy-complete non-Archimedean ordered field in which the supremum axiom is not equivalent to the nested intervals principle.

References

References

Ferreira J. A Construcao dos Números. Textos Universitários - SBM. 4. ed., Rio de Janeiro, 2022.

Courant R, Robbins H. O que é Matemática?. Editora Ciencia Moderna Ltda, Rio de Janeiro, 2000.

Mortari CA. Introducao a Lógica. Editora UNESP, Sao Paulo, 2016.

Bishop E, Bridges D. Constructive Analysis. Springer-Verlag, Berlin Heidelberg GmbH, 1985.

Cohen LW, Ehrlich G. The Structure of the Real Number System. 1. ed. The University Series in Undergraduate Mathematics. Van Nostrand Reinhold Company, New York, 1963.

Cohen LW, Goffman C. A theory of transfinite convergence. Trans. Amer. Math. Soc. 66 (1949), no. 1, 65-74.

Lima EL. Curso de Análise. Projeto Euclides - IMPA, 12. ed., Rio de Janeiro, 2009.

Bloch ED. The Real Numbers and Real Analysis. Springer-Verlag, New York, 2011.

Graeff M. Construcao dos Conjuntos Numéricos: N, Z, Q e R. Trabalho de Conclusao de Curso (Matemática - Licenciatura) - Universidade Federal da Integracao Latino-Americana, Paraná, 2023.

Moreira CN, Cabral MAP. Curso de Análise Real. Editora Instituto de Matemática. 2. ed. Rio de Janeiro, 2021.

Oliveira AL. Equivalencias do axioma do supremo. Trabalho de Conclusao de Curso (Matematica - Licenciatura)-Universidade Federal da Integracao Latino-Americana, Paraná, 2023.

Ruggiero MAG, Lopes VLR. Cálculo Numérico: Aspectos teóricos e computacionais. PEARSON, 2. ed, Sao Paulo, 1997.

Lima EL. Análise Real volume 1. Funcoes de uma variável. Colecao Matemática Universitária - IMPA. 12. ed., Rio de Janeiro, 2014.

Figueiredo DG. Números Irracionais e Transcedentes. Colecao iniciacao científica - SBM. 4. ed., Rio de Janeiro, 2011.

Calder A. O infinito: teste decisivo para o construtivismo. Scientific American Brasil, edicao especial, DUETTO (2006), no. 15, 48-55.

Published

2024-12-28

How to Cite

Martínez León, V. A., Bloot, R., & Letícia de Oliveira, A. (2024). A comprehensive review of the characterization of real numbers. Selecciones Matemáticas, 11(02), 303 - 325. https://doi.org/10.17268/sel.mat.2024.02.08

Most read articles by the same author(s)