Existence and construction of the Peano selection for a multivalued function

Authors

  • Rosario Diomedes Delgado Vásquez Universidad Nacional de Trujillo, Trujillo, La Libertad, Perú.
  • Waymer A. Barreto V. Universidad Nacional de Trujillo, Trujillo, La Libertad, Perú.
  • Teodoro L. Acevedo T. Universidad Nacional de Trujillo, Trujillo, La Libertad, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2024.02.12

Keywords:

Peano selection, multivalued function

Abstract

In the present article, the necessary conditions are presented for a multivalued function in order to define a Peano selection. To achieve this, a bibliographic review was carried out on general results of compact topological spaces, open and closed sets and continuity. To then address the same topics, but on metric spaces. Next, the theory of multivalued functions was studied, specifically semicontinuity, both superiorly and inferiorly. Finally, using the General Theorem of multivalued functions, the necessary conditions are determined for the multivalued function, F : [0, 1]-->[0, 1] × [0, 1] to admit the construction of the selection of Peano.

References

Frankowska H, Aubin L. Set-Valued Analysis. ed. Birkhauser Boston, Paris, MA, 1990.

Babiarz A., and Niezabitowski M. Controllability Problem of Fractional Neutral Systems. Mathematical Problems in Engineering. 2017; vol. 1:15-

Got A. Gunter M. Análisis de Intervalos: Teoría y Aplicaciones.2000, ELSEVIER, 2000; 121(1 y 2):421-464.

Jun Y. and, Jing F. Multi-period medical diagnosis method using a single valued neutrosophic similarity measure based on tangent function. Computer Methods and Programs in Biomedicine. 2016; 123:142-149.

Medina S. Teoremas de punto fijo para multifunciones y aplicación al equilibrio Walrasiano, Universidad de Murgia, Tesis de MASTER de Matemática avanzada. 2009.

Kattov, M. “Felix Hausdorff,” in Dictionary of Scientific Biography. Volume VI. Edited by Charles Coulston Gillispie. New York: Charles Scribner’s Sons, 1974, pp. 176–177.

Aubin JP, Frankowska H. The value does not exist! A motivation for extremal analysis, Probability, Rev. American Institute of Mathematics Sciences, 2022, 7(3):195-214.

Painlevé P. La théorie des systèmes différentiels, Sur les fonctions multivalentes. Annales scientifiques de l'École Normale Supérieure, 1896.

Bouligand H. La mathèmatique et son unité. 1948; 1(8):311.

Kuratowski K. Introduction a la theorie des ensembles et a la topologie. Paris, Francia: ed. Enseignement Mathematique, 1966.

Castaing C, Valadier M. Convex Analysis and Measurable Multifunctions. Springer, Berlin, 1982.

Libesking S. Jumbra I. Euclidean, No-Euclidean, and Transformationald Geometry. Ed. Birkhauser, 2024.

Aizenberg I, Aizenberg N and Vandewalle J. Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer, Media.B.V. Eslovaquia, 2000.

Cantor G. Ein Beitrag zur Mannigfaltigkeitslehre, Journal für die Reine und Angewandte Mathematik. 1878; 84:242-258.

Sagan H. Space-Filling Curves, Ed. Springer-Verlan, New York, 1994.

Román T, Mendieta J, Cantor J. Una construcción alternativa de la curva de Sierpinski. Revista Digital: Matemática, Educación e Internet, 2018; 18(2):1-14.

Kaczynski T. Los mapas multivaluados como herramienta para el modelado y la rigurosidad numérica. 2008; 4:151-176.

Ordoñez N. Los Hiperespacios de subcontinuos Regulares y Magros. UNAM-Dirección General de Biblioteca, México, 2013.

Márquez L. Introducción a los continuos de Peano. Benemérita Universidad Autónoma de Puebla, México, 2017.

Published

2024-12-28

How to Cite

Delgado Vásquez, R. D., Barreto V., W. A., & Acevedo T., T. L. (2024). Existence and construction of the Peano selection for a multivalued function. Selecciones Matemáticas, 11(02), 409 - 416. https://doi.org/10.17268/sel.mat.2024.02.12

Most read articles by the same author(s)