Computational methods in algebraic geometry

Authors

  • Joe Palacios Instituto de Matemática y Ciencia Afines, Universidad Nacional de Ingeniería, Lima, Perú.
  • Ruth Cabanillas Universidad Nacional Mayor de San Marcos, Lima, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2023.02.17

Keywords:

Algebraic variety, polynomial map, commutatve ring, prime ideal

Abstract

In this article we give a general description of the field of algebraic geometry and its computational aspects using Macaulay 2. In particular, we present an application to the bidimensional robotic arm of n spans for any natural n.

References

Cox DA, Little J, O'Shea D. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra: 4ta Edicion, Heidelberg, in Undergraduate Texts in Mathematics by Axler Sh. and Ribet K. Springer, 2015.

Eisenbud D, Grayson D, Stillman M, Sturmfels B. Computations in algebraic geometry with Macaulay 2, Algorithms and Computations in Mathematics, Springer-Verlag, 2001.

Hartshorne R. Algebraic Geometry. New York, Graduate Texts in Mathematics, Springer. 1977.

SchenckH. Computational Algebraic Geometry. 1r edicion, Cambridge, Cambridge University Press, London Mathematical Society Student Texts, Series Number 58, 2003.

Published

2023-12-27

How to Cite

Palacios, J., & Cabanillas, R. (2023). Computational methods in algebraic geometry. Selecciones Matemáticas, 10(02), 462 - 469. https://doi.org/10.17268/sel.mat.2023.02.17

Issue

Section

Mathematics' Teaching