Fourier analysis with R
DOI:
https://doi.org/10.17268/sel.mat.2024.01.11Keywords:
Fourier series, fast Fourier transform, flexible form of FourierAbstract
Fourier analysis is currently one of the important parts of mathematical analysis. Fourier analysis methods are used in physics, electrical engineering, and other sciences to solve various problems. In this article we will give the main concepts of Fourier analysis and its applications in spectral analysis in solving problems using R, as shown in the examples.
References
Carmona Jover I, and Filio López E. Ecuaciones diferenciales (Quinta edición). Pearson Addison Wesley. 2011.
Piskunov, N. Cálculo diferencial e integral. Limusa Noriega editores. Mexico. 2006.
Arfken GB, Weber H J. Mathematical methods for physicists (Seventh edition). Elsevier Academic Press. USA. 2013.
Courant R, Hilbert D. Methods of Mathematical Physics. Volume 1 and Volume 2. Interscience. USA. 1953. 1962.
Davis HF. Fourier Series and Orthogonal Functions. Allyn and Bacon. USA. 1963.
Folland GB. Fourier Analysis and Its Applications. Brooks/Cole Publishing Company. USA. 1992.
Hildebrand F. Methods of Applied Mathematics. Englewood Cliffs, Prentice-Hall. USA. 1965.
Logan J D. Applied Mathematics (Second Edition). John Wiley. USA. 1997.
Tranterm CJ. Integral Transforms in Mathematical Physics (Third Edition). John Wiley. USA. 1966.
Fourier JB. The analytical theory of heat. Dover Publications. USA. 1955.
Grafakos L. Classical Fourier analysis. Graduate Texts in Mathematics 249 (Third edition). USA. 2014.
Grafakos L. Classical Fourier analysis. Graduate Texts in Mathematics 250 (Third edition). USA. 2014.
S. V. Konyagin SV. On the divergence everywhere of trigonometric Fourier series. Rossi˘ıskaya Akademiya Nauk. Matematicheskii Sbornik, 2000; 191(1): 103-126.
Fefferman C. Pointwise convergence of Fourier series. Annals of Mathematics, 1973; 98(3): 551-571.
Antonov NY. Convergence of Fourier series. East Journal on Approximations, 1996; 2(2): 187-196.
Sjölin P. Convergence almost everywhere of certain singular integrals and multiple Fourier series. Arkiv f¨or Matematik, 1971; 9(1-2): 65-90.
Carleson L. On convergence and growth of partial sums of Fourier series. Acta Mathematica, 1966; 116(1): 135-157.
Raussen M, Skau C. Interview with Abel Prize recipient Lennart Carleson. Notices of the American Mathematical Society, 2007; 54(2): 223-229.
Lacey M,Thiele C. A proof of boundedness of the Carleson operator. Mathematical Research Letters, 2000; 7(4): 361-370.
Lacey MT. Carleson’s theorem: proof, complements, variations. Publicacions Matem`atiques, 2004; 48(2): 251-307.
Siktar J. Recasting the Proof of Parseval’s Identity. Turkish Journal of Inequalities, 2019; 3(1): 19-27.
Gibbs JW. Fourier’s Series. Nature, 1898; 59: (1522) 200.
Gibbs JW. Fourier’s Series. Nature, 1899; 59: (1539) 606.
Hewitt E, Hewitt RE. The Gibbs-Wilbraham phenomenon: An episode in Fourier analysis. Archive for History of Exact Sciences, 1979; 21(2): 129–160.
Contreras D, Escolano J. El análisis espectral como instrumento para detectar la estacionalidad. Estadística Española, 1984; 104: 101-144.
Ramírez Cortés JM; Gómez Gil MP; Báez López D (marzo-abril de 1998). El algoritmo de la Transformada Rápida de Fourier y su controvertido origen. Ciencia y Desarrollo, 1998, 24(139): 70-77.
Duhamel P, Vetterli M. Fast Fourier transforms: a tutorial review and a state of the art. Signal Processing, 1990; 19: 259–299.
Lundy T, Buskirk JV. A new matrix approach to real FFTs and convolutions of length 2k. Computing, 2007; 80: 23–45.
Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 1965; 19(90): 297–301.
Cooley JW; Lewis PAW,Welch PD. Historical notes on the fast Fourier transform. IEEE Transactions on Audio and Electroacoustics, 1967; 15(2): 76–79.
Durbin J,Watson GS. Testing for Serial Correlation in Least Squares Regression. I. Biometrika, 1950; 37(3/4): 409-428.
Durbin J, Watson GS. Testing for Serial Correlation in Least Squares Regression. II. Biometrika, 1951; 38(1/2): 159-177.
Durbin J. Tests for Serial Correlation in Regression Analysis Based on the Periodogram of Least-Squares Residuals. Biometrika, 1969; 56(1):1-15.
Durbin J, Watson GS. Testing for Serial Correlation in Least Squares Regression. III. Biometrika, 1971; 58(1):1-19.
Bartlett MS. A Note on the Multiplying Factors for Various Chi Square Approximations. Journal of the Royal Statistical Society, 1954; 16:296-298.
Pyke M. Automation and the fermentation industries. Journal of Institute of Brewing, 1959; 65:239-246.
Stephens MA. Results from the Relation Between Two Statistics of the Kolmogorov-Smirnov Type. The Annals of Mathematical Statistics, 1969; 40(5):1833-1837.
Elaborado a partir de http://personal.us.es/contreras/t05fft.pdf (apuntes de Ampliación a las Matemáticas, de Manuel D. Contreras, Escuela Técnica Superior de Ingenieria (Universidad de Sevilla).
Villarreal F G. Elementos teóricos del ajuste estacional de series económicas utilizando X-12-ARIMA y TRAMO-SEATS. Serie 38. Estudios estadísticos y prospectivos División de Estadística y Proyecciones Económicas. Santiago de Chile.
Maynar FM. La Estimación del ritmo de variación de las series económicas. Estadística Española, 1991; 22:7-56.
Gallant AR.On the Bias in Flexible Functional Forms and an Essentially Unbiased Form. Journal of Econometrics, 1981; 15: 211-245.
Gallant AR, Unbiased Determination of Production Technologies. Journal of Econometrics, 1982; 20: 285-323.
Elbadawi I, Gallant AR, Souza G. An Elasticity Can Be Estimated Consistently without A Priori Knowledge of Functional Form. Econometrica, 1983; 51(6:1731-1751.
Valenzuela M, Markov chains and applications. Selecciones Matemáticas, 2022; 9(01):53-78.
Valenzuela M, Pruebas estadísticas en la Física del bosón de Higgs. Tesis de Maestría en Matemáticas Aplicadas. Universidad Autónoma de Zacatecas. México. november 2017.
Gallant AR, Souza G. On the asymptotic normality of Fourier flexible form estimates. Journal of Econometrics, 1991; 50(3):329-353.
Gallant AR, Golub GH. Imposing curvature restrictions on flexible functional forms, Journal of Econometrics, 1984; 26(3):295-321.
Tsionasa MG, Izzeldi M. Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares. European Journal of Operational Research, 2018; 271(3):797-807.
Adrian R.Fleissiga AR, Kastens T, Terrell D. Semi-nonparametric estimates of substitution elasticities. Economics Letters, 1997; 54(3): 209-215.
Chalfant JA, Gallant AR. Estimating substitution elasticities with the Fourier cost function: Some Monte Carlo results, J. of Econometrics, 1985; 28(2): 205-222.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Selecciones Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.