Qualitative analysis and simulations of a ratio-dependent May-Holling-Tanner predator-prey model with an alternative food source for the predator

Authors

  • Marco Romero-Ordoñez UNMSM, Facultad de Ciencias Matemáticas, Lima, Perú. https://orcid.org/0000-0002-7383-4837
  • Jhelly Pérez-Núñez UNMSM, Facultad de Ciencias Matemáticas, Lima, Perú.
  • Luis Vásquez-Serpa UNMSM, Facultad de Ciencias Matemáticas, Lima, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2022.01.17

Keywords:

May-Holling-Tanner model, ratio-dependent, alternative food, simulations

Abstract

In this work, a May-Holling-Tanner ratio-dependent predator-prey model is studied with an alternative food source for the predator, described by a two-dimensional system of ordinary differential equations.

We study the existence and uniqueness of the solutions of the mentioned above system. In addition, the boundedness and positivity of these solutions are analyzed and we establish conditions for the local stability of a simplified model, through a differentiable equivalence. Likewise, the Python programming language is used to perform the simulations using the Runge-Kutta numerical method of order four with the aim of showing the different cases of qualitative analysis.

References

Arditi R, Ginzburg LR. Coupling in predator-prey dynamics:Ratio-Dependence. J. of theoretical biology. 1989; 139(3):311-326.

Arancibia-Ibarra C, Flores JD, Pettet G, Van Heijster P. A Holling–Tanner predator–prey model with strong Allee effect. Int. J. of Bifurcation and Chaos. 2019; 29(11):1930032.

Arancibia-Ibarra C, Gonz´alez-Olivares E. The Holling-Tanner model considering an alternative food for predator. In Proceedings of the 2015 International Conference on Computational and Mathematical Methods in Science and Engineering CMMSE 2015 (Vol. 1, No. 2015, pp. 130-141).

Aziz-Alaoui MA, Okiye MD. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. App. Math. Letters. 2003; 16(7):1069-75.

Brauer F, Castillo-Chavez C, Castillo-Chavez C. Mathematical models in population biology and epidemiology. New York: Springer; 2012.

Dumortier F, Llibre J, Art´es JC. Qualitative theory of planar differential systems. Berlin: Springer; 2006.

Fernández-Arhex V, Corley JC. La respuesta funcional: una revisión y guía experimental. Ecología austral. 2004; 14(1):83-93.

Holling CS. The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1. The Canadian Entomologist. 1959; 91(5):293-320.

Liang Z, Pan H. Qualitative analysis of a ratio-dependent Holling–Tanner model. J. of Math. Analysis and Applications. 2007; 334(2):954-64.

Morales J, Gallardo JS, Vásques C, Rios Y. Respuesta funcional de Telenomus remus (Hymenoptera: Scelionidae) Spodoptera frugiperda (Lepidoptera: Noctuidae). Bioagro. 2001; 13(2):49-55.

Gonzáles-Olivares E, Valenzuela-Figueroa S, Rojas-Palma A. Influencia del efecto Allee débil en las presas en un modelo de depredación del tipo Leslie-Gower con respuesta funcional sigmoidea. Rev. de Matemática: Teoría y Aplicaciones. 2022; 29(1):105-138.

Ruiz PC, Berrío LM, González E. Una clase de modelo de depredación del tipo Leslie-Gower con respuesta funcional racional no monotónica y alimento alternativo para los depredadores. Selecciones Matemáticas. 2019; 6(2):204-16.

Sáez E, González-Olivares E. Dynamics of a predator-prey model. SIAM J. on Applied Mathematics. 1999; 59(5):1867-78.

Saha T, Chakrabarti C. Dynamical analysis of a delayed ratio-dependet Holling-Tanner predator-prey model. J. of Mathematical Analysis and Applications. 2009; 358(2):389-402.

Tanner JT. The stability and the intrinsic growth rates of prey and predator populations. Ecology. 1975; 56(4):855-67.

Published

2022-07-27

How to Cite

Romero-Ordoñez, M., Pérez-Núñez, J., & Vásquez-Serpa, L. (2022). Qualitative analysis and simulations of a ratio-dependent May-Holling-Tanner predator-prey model with an alternative food source for the predator. Selecciones Matemáticas, 9(01), 196 - 209. https://doi.org/10.17268/sel.mat.2022.01.17

Issue

Section

Communications