Rational Bilinear Forms as Cocycles

Authors

  • Felipe Clímaco Ccolque T. Facultad de Ciencias, UNI-IMCA, Calle los Biólogos, Urb San Cesar, La Molina, Lima 12-Perú.

DOI:

https://doi.org/10.17268/sel.mat.2021.01.10

Keywords:

Rational bilinear form, 2-cocycle, crossed product, Galois extension, Galois Group of a polynomial

Abstract

In this article, some nontrivial 2-cocycles are computed for crossed products of algebraic extensions of the field of rational numbers Q with cyclic groups of order 2 and 3, with finite groups of order 4, 6 and 8. The 2-cocycles are applied for bilinear forms over finite-dimensional vector space whose scalars field is Q and few examples of these cocycles are presented in terms of matrices.

References

Guccione JA, Guccione JJ. The (co)homology of crossed products over monogenic algebras. East West J. of Mathematics. 2001; 3:49-67.

Ccolque Taipe F.C. Criterio de Galois para la Solubilidad por Radicales de Polinomios de grado n>=5. [Tesis de título]. Arequipa: Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa; 2000.

Blattner RJ, Cohen M, and Montgomery S. Crossed products and inner actions of Hopf algebras. Trans. Amer. Math. Soc. 1986;

:671-711.

Hilgemann M.J. On Finite-dimensional Hopf Algebras and Their Classifications. [Thesis Ph.D]. Iowa: Iowa State University; 2010.

Guccione JA, Guccione JJ. Hochschild (co)homology of Hopf crossed products. K-theory. 2002; 25(2):138-169.

Hoffman K, Kunze R. Linear Algebra. 2nd ed. New Jersey : Prentice Hall, Inc.,Englewood Cliffs; 1971.

Loday JL. Cyclic Homology. Berlin: Springer Verlag; 1998.

Fraleigh JB. A first Course in Abstract Algebra. Reading: Addison Wesley; 1967.

Hilton PJ, Stammbach U. A course in Homological Algebra. New York Heidelberg Berlin: Springer Verlag; 1971.

Downloads

Published

2021-07-29

How to Cite

Ccolque T., F. C. (2021). Rational Bilinear Forms as Cocycles. Selecciones Matemáticas, 8(01), 100 - 119. https://doi.org/10.17268/sel.mat.2021.01.10