An introduction to cicada periodic evolution models

Authors

DOI:

https://doi.org/10.17268/sel.mat.2021.02.04

Keywords:

Discrete models, systems with delay, periodic solution, synchronized emergency

Abstract

A remarkable feature of some insects is the synchronized emergence of a large number of insects, such as cicadas that appear in bud ratios every 13 to 17 years. Therefore, this paper presents several mathematical models that explain such synchronized evolutions for certain life cycles in the cicada. For this purpose, a discrete model with lags, proposed by Hoppensteadt and Keller, is taken as a reference, where the population for a type of cicada incorporates a predator species and a carrying capacity in the environment. A qualitative analysis of this system is carried out to determine the existence of synchronized solutions, and the results are contrasted with other models.

Author Biography

Christian Camilo Cortes Garcia, Universidad Surcolombiana

Facultad de ciencias exactas y naturales, Universidad Surcolombiana, Neiva-Colombia.
Departamento de matematicas, Universidad Carlos III de Madrid, Madrid - España.

References

Behncke H. Periodical cicadas. Journal of Mathematical Biology. 2000; 40(5): 413.

Chen S, Bao S, Chen JX. A Model Analyzing Life Cycle of Periodical Cicadas. arXiv preprint q-bio/0510018. 2005.

Hoppensteadt FC, & Keller JB. Synchronization of periodical cicada emergences, Science. 1976; 194(4262):335-337.

Ito H, Kakishima S, Uehara T, Morita S, Koyama T, Sota T, Yoshimura J. Evolution of periodicity in periodical cicadas. Scientific reports. 2015; 5(1):14094.

Karban R. Increased reproductive success at high densities and predator satiation for periodical cicadas. Ecology. 1982; 63(2):321-328.

Lloyd M, Dybas HS. The periodical cicada problem. I. Population ecology. Evolution. 1966; 20(2): 133-149.

Lloyd M, Dybas HS. The periodical cicada problem. II. Evolution. Evolution. 1966: 466-505.

Machta J, Blackwood JC, Noble A, Liebhold AM, Hastings A. A hybrid model for the population dynamics of periodical cicadas. Bulletin of mathematical biology. 2019; 81(4): 1122-1142.

Murray JD. Mathematical biology. Second corrected edition. Springer-Verlag, Berlin, 1993.

Toivonen J, Fromhage L. Modelling the evolution of periodicity in the periodical cicadas. Evolutionary Ecology Research. 2018;19.

Webb GF. The prime number periodical cicada problem. Discrete & Continuous Dynamical Systems-B. 2001; 1(3):387.

Yoshimura J, Hayashi T, Tanaka Y, Tainaka KI, Simon C. Selection for prime-number intervals in a numerical model of periodical cicada evolution. Evolution: International Journal of Organic Evolution. 2009; 63(1):288-294.

Published

2021-12-27

How to Cite

Cortes Garcia, C. C. (2021). An introduction to cicada periodic evolution models. Selecciones Matemáticas, 8(02), 248-266. https://doi.org/10.17268/sel.mat.2021.02.04