On the classical groups of mathematical physics

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.02.13

Keywords:

Geometric algebras, nested of geometric real algebras, nested of groups

Abstract

Starting from Pauli and Dirac matrices of 1928 we present a friendly and unified version of the classical groups of mathematical physics as subgroups of sub algebras of real geometric algebras, created and presented for Clifford in 1879, the prior concept of Clifford algebras.

Author Biography

Edgar Diógenes Vera Saravia, Facultad de Ciencias Matemáticas - Universidad Nacional Mayor de San marcos, Av. Venezuela s.n., Lima, Perú.

Nacido en Jauja - Junin, el 12 de junio de 1946.

References

Baez J, Huerta J. Octoniones y Teoría de Cuerdas. Investigación y Ciencia. 2011; 418:38-43.

Hestenes D. Space-Time Algebra. New York: Gordon and Breach; 1966.

Hestenes, D. New Foundations for Classical Mechanics. Dordrecht: Kluwer Academic Publishers; 1993.

Lounesto P. Clifford Algebras and Spinors. Cambridge: Cambridge University Press; 2001.

Prewass C. Geometric Algebra with Applications in ingineering;Springer, 2009.

Shapiro D. Composition of Quadratic Forms. Berlin: Gruyter Verlag; 2000.

Snigg J. Clifford Algebra, A Computacional tool for Physicists. Oxford: Oxford University Press; 1997.

Sobczyk G. Matrix Gateway to Geometric Algebra. Cambridge: Spacetime and Spinors; 2019.

Vera E. ¿Física Téorica y Octoniones?. Rev. de Investigación de Física. 2018; 21(1):27-30.

Vera E. Sobre un álgebra de matrices sin matrices. Selecciones Matemáticas. 2019; 6(2):311-319.

Wood Ch. The Strange Numbers That Birthed Modern Algebra. Quantamagazine[Internet]; 2018;[ access abril 2020]; disponible en: https://www.quantamagazine.org/the-strange-numbers-that-birthed-modern-algebra-20180906

Published

2020-12-25

How to Cite

Vera Saravia, E. D. (2020). On the classical groups of mathematical physics. Selecciones Matemáticas, 7(02), 314-322. https://doi.org/10.17268/sel.mat.2020.02.13