Almost sure stability of discrete-time Markov jump linear systems

Authors

DOI:

https://doi.org/10.17268/sel.mat.2019.01.10

Keywords:

Markov jump linear systems, Lyapunov exponent, almost sure stability

Abstract

The present work deals with the study of the almost sure stability of discrete-time Markov jump linear systems (MJLS). First, the stability of linear systems in discrete time (MJLS with a single mode) is introduced by the Lyapunov exponent. Then the extension of this theory to the general case is approached: a variant of Birkhoff’s
ergodic theorem is used to revise the equality (4.6) for the Lyapunov exponent described in [6], from this we obtain the characterization of the almost sure stability of the MJLS.

Author Biography

Victor Camarena P., Facultad de Ciencias, Universidad Nacional de Ingeniería, Av.Túpac Amaru 210, Lima-Perú

Facultad de Ciencias, Universidad Nacional de Ingeniería, Av.

Túpac Amaru 210, Lima-Perú

References

Birkhoff, G. D. Proof of the Ergodic Theorem. Proceedings of the National Academy of Sciences of the United States of America. 1931; 17(12): 656-660. doi 10.1073/pnas.17.2.656

Bolzern, P., Colaneri, P. and Nicolao, G. D. On almost sure stability of discrete-time markov jump linear systems. In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. N 04CH37601). 2004; 3: 3204-3208. doi 10.1109/CDC.2004.1428966

Costa, O.L.V., Fragoso, M.D. and Marques, R.P. Discrete-time Markov jump linear systems. Springer-Verlag London, 2005.

Durrett, R. Probability: theory and examples. Cambridge University Press, 2010.

Fang, Y. Stability Analysis of Linear Control Systems with Uncertain Parameters [Ph.D. thesis], Case Western Reserve University, Ohio, 1994. Recuperado de http://www.fang.ece.ufl.edu/mypaper/cwru.pdf

Fang, Y., Loparo and Feng, X. Stability of discrete time jump linear systems. Journal of Mathematical Systems, Estimation and Control. 1995; 5(3): 275-321. Recuperado de http://www.fang.ece.ufl.edu/mypaper/jmsec95fang.pdf

Ishii, H. Discussion on: Almost Sure Stability of Stochastic Linear Systems with Ergodic Parameters. Eur. J. Control. 2008; 14: 125-127. doi 10.1016/S0947-3580(08)70754-4

Norris, J. R. Markov chains. Cambridge University Press, 1998.

Ortega, J. M. Numerical analysis: a second course. SIAM, 1990.

Sworder, D. D. and Rogers, R. O. An LQG solution to a control problem with solar thermal receiver. IEEE Transactions on Automatic Control. 1983; 28: 971-978. doi 10.1109/TAC.1983.1103151

Published

2019-07-21

How to Cite

Camarena P., V. (2019). Almost sure stability of discrete-time Markov jump linear systems. Selecciones Matemáticas, 6(01), 77-83. https://doi.org/10.17268/sel.mat.2019.01.10