Multivalued Theta - monotone operators

Authors

  • Edú Paredes Rojas Escuela de Posgrado de la Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Universitaria s/n. - Av. Venezuela cdra. 34, Ciudad Universitaria, Lima-Perú

DOI:

https://doi.org/10.17268/sel.mat.2018.01.08

Keywords:

Multivalued operators, Monotone operators, Generalized Monotone Operator, Maximal monotone, Locally Bounded Operator

Abstract

This article we give an introduction to the multivalued operators, we present a new concept of monotonicity, the theta - monoticity, Which is a generalization of all known types of monoticity, this theory is very useful, since it allows us to study properties for all types of monticity by analyzing only one type of them. We generalize under certain conditions theorems that were only in finite dimension to infinite dimensional Banach spaces. Finally we show an application to the sobreyectividad in dimension finite that can be used in the theory of semigroups and imposing restrictions can be tested in more general spaces.

References

Iusem,A., Kassay, G. and Sosa, W. An existence result for equilibrium problems with some surjectivity consequences, Journal of Convex Analysis, 16(3&4) (2009), pp. 807-826.

Marian,D.; Peter,I.R. and Pintea, C. A class of generalized monotone operators, Journal of Mathematical Analysis and Applications, 421(2) (2015), pp. 1827 - 1843.

Browder, F.E. Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc. 118 (1965), pp. 338-351.

Browder, F.E. Nonlinear maximal monotone operators in Banach space, Math. Annalen. 175(1968), pp. 89-113.

Browder, F.E. The fixed point theory of multi-valued mappings in topological vector spaces, Math. Annalen. 177(1968), pp. 283-301.

Kassay, G.; Pintea, C. On preimages of a class of generalized monotone operators, Journal of Nonlinear Analysis: Theory, Methods & Applications, 73(11) (2010), pp. 3537 - 3545.

Kassay,G.; Pintea,C.; László, S. Monotone operators and closed countable sets, Optimization, A Journal of Mathematical Programming and Operations Research, 60(8-9) (2011), pp. 1059 - 1069.

Rockafellar, R.T. Wets, R.J-B. Variational Analysis, 743 pages, ISBN: 978-3-642-02431-3 Springer-Verlag Berlin Heidelberg (2009). v. 3

László, S. Generalized Monotone Operators, Generalized Convex Functions and Closed Countable Sets , Journal of Convex Analysis, 18(4) (2011), pp. 1075 - 1091.

László, S. Ph.D Thesis: The Theory of Monotone Operators with Applications, Babes-Bolyai University, Cluj-Napoca, Romania(2011).

László, S. Monotone Operators: Theory and Applications 300 pages, ISBN: 978-3659497636 LAP LAMBERT Academic Publishing, 2013. http://www.amazon.com/Monotone-Operators-Applications-Szilárd-László/dp/3659497630.

Santiago Ayala, Y. Principios Fundamentales del Análisis Funcional, 79 pages. Libro Resumen XXXI Coloquio de la Sociedad Matemática Peruana, Ica(2013). v. 1

Published

2018-07-27

How to Cite

Paredes Rojas, E. (2018). Multivalued Theta - monotone operators. Selecciones Matemáticas, 5(01), 58 - 73. https://doi.org/10.17268/sel.mat.2018.01.08