Hypersurfaces with planar lines of curvature in Euclidean Space

Authors

  • Carlos M. Carrión Riveros Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
  • Armando M. Vásquez Corro Instituto de Matemática e Estatística, Universidade Federal de Goias, 74001-970, Goiania-GO, Brazil

DOI:

https://doi.org/10.17268/sel.mat.2017.02.02

Keywords:

Sphere congruence, Laplace invariants, lines of curvature, isothermic surfaces

Abstract

In this work, we present explicit parameterizations of hypersurfaces parameterized by lines of curvature with prescribed Gauss map and we characterize the hypersurfaces with planar curvature lines. As an application
we obtain a classification of isothermic surfaces with respect to the third fundamental form with two planar curvature lines. Also, we present a class of surfaces with one family of planar curvature lines and generalize these results to present classes of hypersurfaces with families of planar curvature lines.

References

D. G. DIAS, Classes de hipersuperficies Weingarten generalizada no espaco Euclidiano, PhD thesis, Universidade Federal de Goias, 2014.

E. V. FERAPONTOV, Reciprocal transformations and their invariants, Diff Uravnen., 25 (1989), pp. 1256–1265.

N. KAMRAN AND K. TENENBLAT, Laplace transformation in higher dimensions, Duke Math. Journal, 84 (1996), pp. 237–266.

D. S. KIM AND Y. H. KIM, Surfaces with planar lines of curvature, Honam Math., 32 (2010), pp. 777–790.

M. L. LEITE, Surfaces with planar lines of curvature and orthogonal systems, J. Math. Anal. Appl., 421 (2015), pp. 1254–1273.

L. A. MASAL’TSEV, Surfaces with planar lines of curvature in Lobachevskii space, Izv. Vyssh. Uchebn. Zaved. Math.,3(2001),pp. 39–46.

R. MIYAOKA, Dupin hypersurfaces and a Lie invariant, Kodai Math. J., 12 (1989), pp. 228–256.

E. MUSSO AND L. NICOLODI, Laguerre Geometry of Surfaces with Plane Lines of Curvature, Abh. Math. Sem. Univ. Hamburg,69 (1999), pp. 123–138.

R. NIEBERGALL, Dupin hypersurfaces in R5, Geom. Dedicata, 40 (1991), pp. 1–22, and 41 (1992), pp. 5–38.

J. C. C. NITSCHE, Lectures on minimal surfaces, vol I. Cambridge University Press, 1989.

U. PINKALL, Dupin hypersurfaces, Math. Ann., 270 (1985)., pp. 427–440.

C. M. C. RIVEROS, Dupin hypersurfaces with four principal curvatures in R5 with principal coordinates Rev. Mat. Complut.,23 (2010), pp. 341–354.

C. M. C. RIVEROS AND A. M. V. CORRO, Invariantes de Laplace en hipersuperficies parametrizadas por líneas de curvatura, Selecciones Matemáticas., 4 (1) (2017), pp. 30–37.

Classes of hypersurfaces with vanishing Laplace invariants, Bull. Korean Math. Soc., 49 (4) (2012), pp. 685–692.

C. M. C. RIVEROS AND K. TENENBLAT, Dupin hypersurfaces in R5, Canadian Journal of Mathematics, 57 (6) (2005),pp. 1291–1313.

C. M. C. RIVEROS, K. TENENBLAT AND L. A. RODRIGUES, On Dupin hypersurfaces with constant Mobius curvature, Pacific J. Math., 236 (1) (2008) pp. 89–103.

Published

2017-12-15

How to Cite

Riveros, C. M. C., & Corro, A. M. V. (2017). Hypersurfaces with planar lines of curvature in Euclidean Space. Selecciones Matemáticas, 4(02), 152-161. https://doi.org/10.17268/sel.mat.2017.02.02