An alternative approach to the power series method

Authors

  • Márcio Rostirolla Adames Departamento de Matemática, Universidade Tecnológica Federal do Paraná, Av. Sete de Setembro, 3165 - Curitiba - PR - Brasil

DOI:

https://doi.org/10.17268/sel.mat.2017.02.01

Keywords:

ODE, Non-homogeneous, Initial Value Problem, Power Series, Strong Operator Convergence

Abstract

This article consider the classical problem of linear non-homogeneous second order Initial Value Problems with analytic coefficients. It classifies the possible kinds of analytic solutions, giving criteria for the nonexistence
of analytical solutions and for the existence of multiple analytic solutions. An alternative proof for the convergence of the power series method is given and it applies for some singular irregular points.

References

R.P. AGARWAL AND D. O’REGAN, Singular Differential and Integral Equations with Applications, Springer Science+Business Media, Dordrecht, NL, 2003.

D.C. BILES, Nonexistence of solutions for second-order initial value problems, Differential Equations&Applications, 9(2017),pp. 141–146.

W.E. BOYCE AND R.C. DIPRIMA, Elementary Differential Equations and Boundary Value Problems, Sixth ed., JohnWiley &Sons, Inc, New York, NY, 1997.

G. Frobenius, Ueber die Integration der Linearen Differentialgleichungen durch Reihen, Journal f¨ur die Reine und Angewandte Mathematik, 76 (1873), pp. 214–235.

J.J. Gray, Fuchs and the theory of differential equations, Bulletin of the American Mathematical Society, 10 (1984), no 1,pp. 1–26.

M. Kline, Mathematical Thought from Ancient to Modern Times, vol. 2, Oxford University Press, New York, NY, 1972.

E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley & Sons, New York, NY, 1989.

H. Pollard and M. Tenenbaum, Ordinary Differential Equations -An Elementary Textbook for Students of Mathematics, Engineering and the Sciences, Dover Publications, Inc., New York, 1985.

G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, vol. XXX, American Mathematical Society, Providence, RI, 2011.

Published

2017-12-15

How to Cite

Adames, M. R. (2017). An alternative approach to the power series method. Selecciones Matemáticas, 4(02), 139-151. https://doi.org/10.17268/sel.mat.2017.02.01