APPROXIMATION OF THE DISTANCE IN THE SPHERE THROUGH OF THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEM ASSOCIATED TO GEODESICS

Authors

DOI:

https://doi.org/10.17268/sel.mat.2016.02.07

Keywords:

Intrinsec distance, geodesic distance, geodesics, sphere, initial value problem, approximation

Abstract

In this paper, we proposes an algorithm to approximate the Geodesic distance between points p and q of sphere, through the numerical solution of initial value problem associated with the system of ordinary differential equations of the geodesics; for this an appropriate direction is obtained.

References

Kaya, C. Y, and Noakes, J. L. The Leap-Frog Algorithm and Optimal Control: theoretical aspect. Proceedings of ICOTA 98, Perth, Australia.

Kaya, C. Y, and Noakes, J. L. Geodesic and an Optimal Control Algorithm, Proccedings of the 36 th IEEE CD6, San Diego, California, U.S.A, December 1997.

Noakes, J. L. A Global Algorithm for Geodesics, Journal of the Australian Mathematical Society, 1998.

Wesolowsky, G. O. Location problems on a sphere. Regional Science and Urban Economics, 1982, vol. 12, no 4, p. 495-508.

Rubio, Franco. Aproximación de la distancia en el plano a través de la solución numérica de problemas de valor inicial asociados a Geodésicas. Selecciones Matemáticas, 2015, vol. 2, no 02, p. 81-91.

Do Carmo, Manfredo. Differential geometry of curves and surfaces. Englewood Cliffs: Prentice-hall, 1976.

Mangalika, Dedigama. Spherical Location Problems with Restricted Regions and Polygonal Barriers. 2005.

Donnay, Joseph D. Spherical trigonometry. Read Books Ltd, 2013.

Published

2016-12-11

How to Cite

Rubio, F., & León, R. (2016). APPROXIMATION OF THE DISTANCE IN THE SPHERE THROUGH OF THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEM ASSOCIATED TO GEODESICS. Selecciones Matemáticas, 3(02), 113-123. https://doi.org/10.17268/sel.mat.2016.02.07