List-Chromatic Number and Chromatically Unique of the Graph Kr2 + Ok

Authors

  • Le Xuan Hung HaNoi University for Natural Resources and Environment 41 A, Phu Dien Road, Phu Dien precinct, North Tu Liem district, Hanoi, Vietnam

DOI:

https://doi.org/10.17268/sel.mat.2019.01.04

Keywords:

Chromatic number, list-chromatic number, chromatic polinomial, chromatically unique graph, complete r-partite graph

Abstract

In this paper, we determine list-chromatic number and characterize chromatically unique of the graph G = Kr2 +Ok. We shall prove that ch(G) = r + 1 if 1<=k<=2, G is x-unique if 1<=k<=3.

References

Behzad, M. Graphs and thei chromatic number, Doctoral Thesis (Michigan State University), 1965.

Behzad, M. and Chartrand, G. Introduction to the theory of graphs, Allyn and Bacon, Boston 1971.

Behzad, M., Chartrand G. and Cooper,J. The coloring numbers of complete graphs, J. London Math. Soc. 42 (1967), 226 – 228.

Birkhoff, G. D. A determinant formula for the number of ways of coloring a map, Annals of Math. 14 (2) (1912) 42–46.

Bondy, J.A. and Murty, U.S.R. Graph theory with applications, MacMillan, 1976.

Brandstadt, A., Hammer, P.L., Le, V.B. and Lozin, V.V. Bisplit graphs, Discrete Math. 299 (2005) 11–32.

Chao, C.Y., Whitehead, Jr. E.G. On chromatic equivalence of graphs. In: Theory and Applications of Graphs, ed. Y. Alavi and D.R. Lick, Springer Lecture Notes in Math. 642 (1978) 121–131.

Chvatal, V. and Hammer, P.L. Aggregation of inequalities in integer programming, Annals Disc. Math. 1 (1977) 145–162.

Diestel, R. Graph Theory, Springer – Verlag New Your 2000.

Koh, K.M. and Teo, K.L. The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259–285.

Koh, K.M. and Teo, K.L. The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59–78.

Read,R.C. An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52–71.

Ngo Dac Tan and Le Xuan Hung. On colorings of split graphs, Acta Mathematica Vietnammica, Volume 31, Number 3, 2006, pp. 195– 204.

Vizing, V.G. On an estimate of the chromatic class of a p-graph, Discret. Analiz. 3 (1964) 23–30. (In Russian)

Wilson, R.J. Introduction to graph theory, Longman group ltd, London (1975).

Downloads

Published

2019-07-21

How to Cite

Xuan Hung, L. (2019). List-Chromatic Number and Chromatically Unique of the Graph Kr2 + Ok. Selecciones Matemáticas, 6(01), 26-30. https://doi.org/10.17268/sel.mat.2019.01.04