Formulación Lagrangiana-Euleriana Arbitraria del sistema de ecuaciones que modelan la interacción del flujo de aire con el alvéolo pulmonar

Raúl E. Reupo Vallejos, Obidio Rubio ., Alexis Rodriguez ., Luis J. Caucha .

Resumen


En este artículo, Formulamos un proceso fisiológico, a través de un problema de interacción fluido-estructura bidimensional entre el flujo de aire y el alvéolo pulmonar, en el marco de referencia Euleriano - Lagrangiano
Arbitrario (ALE). Este problema se origina al acoplar las ecuaciones del fluido y de la estructura, descritas por las Ecuaciones de evolución de Navier-Stokes para flujos incompresibles, y una ecuación de equilibrio,
respectivamente.


Palabras clave


Interacción Fluido-Estructura; flujo de aire; alvéolo pulmonar; marco de referencia Lagrangiano- Euleriano Arbitrario (ALE); Ecuaciones de Navier-Stokes; Ecuación de Equilibrio

Texto completo:

PDF

Referencias


Barker, A., Cai, X. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, Journal of Computational Physics. 229, (2010), 642-659.

Coutand, D., Shkoller, S. On the motion of an elastic solid inside of an incompressible viscous fluid, Archieve for Rational Mechanics and Analysis, 176, N◦01 (2005), 25-102.

Coutand, D., Shkoller, S. On the interaction between quasilinear elastodynamics and the Navier-Stokes equations, Archieve for Rational Mechanics and Analysis, 179, N◦03 (2006), 303-352.

Dailey, H., Ghadiali, S. Fluid-structure analysis of microparticle transport in deformable pulmonary alveoli, Journal of AerosolScience , 38 (2007), 269-288.

Dailey, H., Yalcin, H., Ghadiali, S. Fluid-structure modeling of flow-induced alveolar epithelial cell deformation, Computers and Structures, 85 (2007), 1066-1071.

Du, Q., Gunzburger, M., Hou, L., Lee, J. Analysis of a Linear Fluid-Structure Interaction Problem, Discrete and Continuous Dynamical Systems , 9, N◦03 (2003), 633-650.

Dunne, T., Rannacher, R., Richter, T. Numerical Simulation of Fluid-Structure Interaction based on Monolithic VariationalFormulations, Institute of Applied Mathematics University of Heidelberg, Germany.

Eken, A., Sahin, M. A parallel monolithic approach for fluid-structure interaction in a cerebral aneurysm, Computers and Fluids, 153, (2017), 61-75.

Formaggia, L., Quarteroni, A., Veneziani, A. Cardiovascular Mathematics: Modeling and simulation of the circulatory system, Springer-Verlag. Milano(2009).

Frei, S. Eulerian finite element methods for interface problems and fluid-structure interactions, PhD thesisUniversitat Heidelberg.

Hughes, T., Liu ,W., Zimmermann, T. Lagrange-Eulerian finite element formulation for incompressible viscous flows, Comput.Meths. Appl. Mech. Engrg. 29, (1981), 329-349.

Ignatova, M., Kukavica, I., Lasiecka I., Tuffaha, A. On well-posedness and small data global existence for an interface dampedfree boundary fluid-structure model, Nonlinearity. 27, (2014), 467-499.

Kukavica, I., Tuffaha, A. Solutions to a fluid-structure interaction free boundary problem, Discrete and Continuous Dynamical Systems. 32, N◦04 (2012), 1355-1389.

Meyers, M., Chawla, K. Mechanical Behavior of Materials, Cambridge University Press, New York 2009.

Richter, T. Fluid Structure Interactions. Modeling, Mathematical Analysis and Finite Elements, Special, preliminar edition exclusively for the participants of theWinter School on Modeling, Adaptative Discretizations and Solvers for Fluid-Structure Interactions, Linz, 2016.

Richter, T. A Monilithic Geometric Multigrid Solver for Fluid-Structure Interactions in ALE formulation, International journal for Numerical Methods in Engineering. 104, N◦05 (2015), 372-390.

Wick, T. Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library, Archive of Numerical Software. 1, N◦01 (2013), 1-19.

Wick, T.,Wollner,W. On the differentiability of stationary fluid-structure interaction problems with respect to the problem data, Hamburger Beitrage zur Angewandten Mathematik. (2013).

Wick, T. Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics. PhD thesis, Universitat Heidelberg, 2012. urn:nbn:de:bsz:16-opus-129926.

Wick, T. Modeling, Discretization, Optimization, and Simulation of Fluid-Structure Interaction, Technische Univesritat Munchen, 2015.

Wick, T. Fluid-structure interactions using different mesh techniques, Computers and Structures. 89, (2011), 1456-1467.

Wu, Y., Chuan Cai, X. A parallel two-level method for simulating blood flows in branching arteries with the resistive boundary ndition, Computers & Fluids. 45, (2011), 92-102.

Wu, Y., Cai, X. A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation, Journal of Computational Physics. 258, (2014), 524-537.

Yang,Y. Mathematical Modeling and Simulation of the Evolution of Plaques in Blood Vessels. PhD thesis,Universitat Heidelberg, 2014.

Yu, Y., Baek, H., Karniadakis, G. Generalized fictitious methods for fluid-structure interactions: Analysis and simulations, Journal of Computational Physics. 245, (2013), 317-346.

-----------------------------------------------------------

Received: Aug. 30, 2017.

Accepted: Nov. 18, 2017.

Corresponding author: rreupo@unprg.edu.pe

------------------------------------------------------------




DOI: http://dx.doi.org/10.17268/sel.mat.2017.02.06

Enlaces refback

  • No hay ningún enlace refback.


Short Title: Sel. mat.

-------------------------------------------------------------------------------------

 ISSN:  2411-1783  Versión Electrónica.                      

-------------------------------------------------------------------------------------

Derechos reservados © 2014 Departamento de Matemáticas.

                  E-mail: selecmat@unitru.edu.pe

 

Licencia de Creative Commons 

Selecciones Matemáticas es una revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.