AVALIANDO A RELAÇÃO ENTRE A DINÂMICA DE NUTRIENTES E A PRODUÇÃO DE PALMA DE ÓLEO EM TURFAS USANDO SEM-PLS: UM ESTUDO DE CASO EM BENGKALIS, RIAU, INDONÉSIA
DOI:
https://doi.org/10.17268/sci.agropecu.2026.012Palavras-chave:
Nível de água subterrânea, dinâmica de nutrientes, palmeira de óleo, solo de turfa, SEM-PLS, NCAResumo
A expansão de plantações de dendezeiros para turfeiras representa uma área crítica de estudo, particularmente na compreensão de como a dinâmica de nutrientes e o manejo das águas subterrâneas influenciam a produtividade do dendezeiro. Esta pesquisa foi conduzida em plantações de dendezeiros de pequenos produtores de 8 a 10 anos, cultivadas em solos de turfa na Regência de Bengkalis, Província de Riau. Utilizou-se o delineamento em blocos casualizados, incorporando três tratamentos de lençol freático: A. 40 cm, B. 60 cm e C. 80 cm. As taxas de aplicação de fertilizantes foram: ureia a 2,50 kg/árvore/ano, SP-36 a 2,75 kg/árvore/ano, MOP (KCl) a 2,25 kg/árvore/ano e dolomita a 2 kg/árvore/ano. A análise de dados utilizou uma combinação de Modelagem de Equações Estruturais baseada em Mínimos Quadrados Parciais (SEM-PLS) e Análise de Condição Necessária (NCA). A SEM-PLS identificou vias de suficiência, enquanto a NCA determinou limiares críticos de nutrientes — ou gargalos — necessários para o crescimento e a produtividade ideais. Os resultados indicam que o teor de nutrientes foliares é um intermediário fundamental entre a disponibilidade de nutrientes no solo e a produtividade, sendo um fator essencial no crescimento do dendezeiro. Em contraste, o efeito direto do crescimento da planta sobre a produtividade foi mínimo. O uso combinado da SEM-PLS e da NCA fornece uma estrutura analítica robusta para a compreensão da formação da produtividade e o desenvolvimento de estratégias de manejo de nutrientes para o cultivo de dendezeiro em turfeiras.
Referências
Amora, J. T. (2021). Convergent validity assessment in PLS-SEM: A loadings-driven approach. Data Anal. Perspect. J., 2(1), 1–6.
Anwar, S., Kosaki, T., & Yonebayashi, K. (2004). Cupric oxide oxidation products of tropical peat soils. Soil Sci. Plant Nutr., 50(1), 35–43. https://doi.org/10.1080/00380768.2004.10408450
Bakri Imanudin, M. S., Prayitno, M. B., et al. (2025). Nutrient dynamics in peat soil application under water management planning: A case study of Perigi, South Sumatra, Indonesia. J. Ecol. Engin, 26(6), 162–169. https://doi.org/10.12911/22998993/202347
Bera, A., Sow, S., Ranjan, S., & Murmu, J. (2022). An Overview of the Source-Sink Relationship. Indian J. Nat. Sci., 13(72), 44216–44228.
Chin, W. W. (1998). Issues and opinions on structural equation modeling. MIS Quarterly: Management Information Systems, 22(1).
Chin, W. W., & Newsted, P. R. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research. Stat. Strateg. for Small Sample Res. 295-336.
Cole, L. E. S., Åkesson, C. M., Hapsari, K. A., .. et al. (2022). Tropical peatlands in the Anthropocene: Lessons from the past. Anthropocene, 37(February 2021), 100324. https://doi.org/10.1016/j.ancene.2022.100324
Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal., 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008
Directorate General of Estate Crops. (2025). Statistik Perkebunan Unggulan NasionalStatistics of Estatet Crops 2023-2025. In the Directorate General of Estate Crops, Ministry of Agriculture.
Dul, J. (2016). Necessary Condition Analysis (NCA): Logic and Methodology of “Necessary but Not Sufficient” Causality. Organ.Res. Methods, 19(1), 10–52. https://doi.org/10.1177/1094428115584005
Dul, J. (2020). How to sample in necessary condition analysis (NCA). Eur. J. Int. Manag, 23(1), 1-13.
Fahmi, A., & Radjaguguk, B. (2013). Peran Gambut Terhadap Nitrogen Total Tanah di Lahan Rawa (The Role of Peat on Total Nitrogen in The Wetland Soils). Berita Biologi, 12(2), 223–230. (in Indonesian)
Fornell, C., & Larcker, D. F. (1981). Erratum: Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark.Res. 18(4), 427. https://doi.org/10.2307/3150980
Gnanasanjevi, G. Balasubramaniam, P., Sriram, N., et al. (2025). A PLS‑SEM approach to understanding tea growers’ adoption intentions of agroforestry boundary planting: an integrated theoretical framework. Agroforest Syst, 99, 99. https://doi.org/10.1007/s10457-025-01189-6
Hartatik, W., Subiksa, I. G. M., & Dariah, A. (2011). Sifat Fisika dan Kimia Lahan Gambut. In Pengelolaan Lahan Gambut Berkelanjutan (1st ed., p. 16). https://doi.org/10.21082/jsdl.v16n1.2022.9-21
Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2022). A Primer on Partial Least Squares Structural Equation Modeling. Long Range Planning, 46(1–2), 184–185. https://doi.org/10.1016/j.lrp.2013.01.002
Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2021). Evaluation of Formative Measurement Models. In Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (pp. 91-113). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7_5
Hair, J. F., Risher, J. J., Sarstedt, M., et al. (2019). When to use and how to report the results of PLS-SEM. Eur. Bus.Rev. 31(1), 2–24. https://doi.org/10.1108/ebr-11-2018-0203
Hikmatullah & Sukarman (2014). Physical and chemical properties of cultivated peat soils in four trials. J Trop Soil, 19(3), 131–141. https://doi.org/10.5400/jts.2014.v19i3.131-141
Hua-Bing, L., Jun-Qin, G., Jia-Tao, Z., et al. (2025). Water table decline reduces soil organic carbon by decreasing particulate organic carbon in peatlands: Beyond enzymic and mineral protection. CATENA, 259, 109347. https://doi.org/10.1016/j.catena.2025.109347
Kassim, N. Q. B., & Yaacob, A. (2019). Nutrient Dynamics in Peat Soil: Influence of Fluctuating Water Table. IOP Conference Series: Earth and Environmental Science, 327(1). https://doi.org/10.1088/1755-1315/327/1/012024
Kong, J., & Li, Y. (2025). Spatio-temporal variations in carbon sources, sinks, and footprints of cropland ecosystems in the Middle and Lower Yangtze River Plain of China, 2013–2022. Sci. Rep., 15(1), 1–27. https://doi.org/10.1038/s41598-025-98457-3
Kunarso, A., Bonner, M. T. L., Blanch, E. W., et al. (2022). Differences in tropical peat soil physical and chemical properties under different land uses: A Systematic review and meta-analysis. J. of Soil Sci. and Plant Nutr., 22(4), 4063–4083. https://doi.org/10.1007/s42729-022-01008-2
Kurnain, A. (2019). Hydrophysical properties of ombrotrophic peat under drained peatlands. Int. Agrophys., 33(3), 277–283. https://doi.org/10.31545/intagr/110773
Kurnianto, S., Selker, J., Boone Kauffman, J., et al. (2019). The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change, 24(4), 535–555. https://doi.org/10.1007/s11027-018-9802-3
Macrae, M. L., Devito, K. J., Strack, M., et al. (2013). Effect of water table drawdown on peatland nutrient dynamics: Implications for climate change. Biogeochemistry, 112(1–3), 661–676. https://doi.org/10.1007/s10533-012-9730-3
Mohamad, H., Sulaiman, M., Saida, N., et al. (2025). Klias peat soil: a depth-based property assessment. J. Soil Agric., 3(1), 9-28. https://doi.org/10.37934/sea.3.1.928a
Pu, Y., Lang, S., Li, Y., et al. (2024). Regulation of soil phosphorus availability in alpine meadows: Insights from phosphate-mobilising bacteria. Appl. Soil Ecol., 204, 105730. https://doi.org/10.1016/j.apsoil.2024.105730
Ramayah, T., Cheah, J.-H., Chuah, F., et al. (2016). Partial Least Squares Structural Equation Modeling. In Handbook of Market Research (Issue 1). Pearson Malaysia Sdn Bhd.
Renger, M., Wessolek, G., Schwärzel, K., et al. (2002). Aspects of peat conservation and water management. J. Plant Nutr. Soil Sci., 165(4), 487–493. https://doi.org/10.1002/1522-2624(200208)165:4<487::aid-jpln487>3.0.co;2-c
Richter, N. F., Schubring, S., Hauff, S., et al. (2020). When predictors of outcomes are necessary: guidelines for the combined use of PLS-SEM and NCA. Ind. Manag. Data Syst., 120(12), 2243–2267. https://doi.org/10.1108/imds-11-2019-0638
Smith, M. R., Rao, I. M., & Merchant, A. (2018). Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front.in Plant Sci, 871, 1–10. https://doi.org/10.3389/fpls.2018.01889
Sutejo, Y., Saggaff, A., Rahayu, W., et al. (2017). Physical and chemical characteristics of fibrous peat. AIP Conference Proceedings, 1903(June). https://doi.org/10.1063/1.5011609
Szajdak, L. W., Jezierski, A., Wegner, K., et al. (2020). Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules, 25(11). https://doi.org/10.3390/molecules25112587
Taiz, L., Zeiger, E., Møller, I., et al. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates.
Teh, C. B. S., Cheah, S. S., Kulaveerasingam, H. (2024). Development and validation of an oil palm model for a wide range of planting densities and soil textures in Malaysian growing conditions. Heliyon, 10(14), e32561. https://doi.org/10.1016/j.heliyon.2024.e32561
Troiville, J., Moisescu, O. I., Radomir, L. (2025). Using necessary condition analysis to complement multigroup analysis in partial least squares structural equation modeling, J. Retail. Consum. Serv., 82, 104018. https://doi.org/10.1016/j.jretconser.2024.104018
van der Sloot, M., Kleijn, D., De Deyn, G. B., et al. (2022). Carbon to nitrogen ratio and quantity of organic amendment interactively affect crop growth and soil mineral N retention. Crop Environ., 1(3), 161–167. https://doi.org/10.1016/j.crope.2022.08.001
Veloo, R., Ranst, E. Van, & Selliah, P. (2015). NJAS - Wageningen Journal of Life Sciences Peat Characteristics and its Impact on Oil Palm Yield. NJAS - Wageningen Journal of Life Sciences, 72–73, 33–40. https://doi.org/10.1016/j.njas.2014.11.001
Widiarso, B., Minardi, S., Komariah, Chandra, T. O., et al. (2020). Predicting peatland groundwater table and soil moisture dynamics affected by drainage level. Sains Tanah, 17(1), 42–49. https://doi.org/10.20961/stjssa.v17i1.38459
Wu, W., Du, X., Qin, Z., et al. (2024). Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China. Agriculture (Switzerland), 14(12). 2133; https://doi.org/10.3390/agriculture14122133
Zayed, O., Hewedy, O. A., Abdelmoteleb, A., et al. (2023). Nitrogen journey in plants: from uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10), 1443; https://doi.org/10.3390/biom13101443
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Scientia Agropecuaria

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).

