AVALIANDO A RELAÇÃO ENTRE A DINÂMICA DE NUTRIENTES E A PRODUÇÃO DE PALMA DE ÓLEO EM TURFAS USANDO SEM-PLS: UM ESTUDO DE CASO EM BENGKALIS, RIAU, INDONÉSIA

Autores

DOI:

https://doi.org/10.17268/sci.agropecu.2026.012

Palavras-chave:

Nível de água subterrânea, dinâmica de nutrientes, palmeira de óleo, solo de turfa, SEM-PLS, NCA

Resumo

A expansão de plantações de dendezeiros para turfeiras representa uma área crítica de estudo, particularmente na compreensão de como a dinâmica de nutrientes e o manejo das águas subterrâneas influenciam a produtividade do dendezeiro. Esta pesquisa foi conduzida em plantações de dendezeiros de pequenos produtores de 8 a 10 anos, cultivadas em solos de turfa na Regência de Bengkalis, Província de Riau. Utilizou-se o delineamento em blocos casualizados, incorporando três tratamentos de lençol freático: A. 40 cm, B. 60 cm e C. 80 cm. As taxas de aplicação de fertilizantes foram: ureia a 2,50 kg/árvore/ano, SP-36 a 2,75 kg/árvore/ano, MOP (KCl) a 2,25 kg/árvore/ano e dolomita a 2 kg/árvore/ano. A análise de dados utilizou uma combinação de Modelagem de Equações Estruturais baseada em Mínimos Quadrados Parciais (SEM-PLS) e Análise de Condição Necessária (NCA). A SEM-PLS identificou vias de suficiência, enquanto a NCA determinou limiares críticos de nutrientes — ou gargalos — necessários para o crescimento e a produtividade ideais. Os resultados indicam que o teor de nutrientes foliares é um intermediário fundamental entre a disponibilidade de nutrientes no solo e a produtividade, sendo um fator essencial no crescimento do dendezeiro. Em contraste, o efeito direto do crescimento da planta sobre a produtividade foi mínimo. O uso combinado da SEM-PLS e da NCA fornece uma estrutura analítica robusta para a compreensão da formação da produtividade e o desenvolvimento de estratégias de manejo de nutrientes para o cultivo de dendezeiro em turfeiras.

Referências

Amora, J. T. (2021). Convergent validity assessment in PLS-SEM: A loadings-driven approach. Data Anal. Perspect. J., 2(1), 1–6.

Anwar, S., Kosaki, T., & Yonebayashi, K. (2004). Cupric oxide oxidation products of tropical peat soils. Soil Sci. Plant Nutr., 50(1), 35–43. https://doi.org/10.1080/00380768.2004.10408450

Bakri Imanudin, M. S., Prayitno, M. B., et al. (2025). Nutrient dynamics in peat soil application under water management planning: A case study of Perigi, South Sumatra, Indonesia. J. Ecol. Engin, 26(6), 162–169. https://doi.org/10.12911/22998993/202347

Bera, A., Sow, S., Ranjan, S., & Murmu, J. (2022). An Overview of the Source-Sink Relationship. Indian J. Nat. Sci., 13(72), 44216–44228.

Chin, W. W. (1998). Issues and opinions on structural equation modeling. MIS Quarterly: Management Information Systems, 22(1).

Chin, W. W., & Newsted, P. R. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research. Stat. Strateg. for Small Sample Res. 295-336.

Cole, L. E. S., Åkesson, C. M., Hapsari, K. A., .. et al. (2022). Tropical peatlands in the Anthropocene: Lessons from the past. Anthropocene, 37(February 2021), 100324. https://doi.org/10.1016/j.ancene.2022.100324

Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal., 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008

Directorate General of Estate Crops. (2025). Statistik Perkebunan Unggulan NasionalStatistics of Estatet Crops 2023-2025. In the Directorate General of Estate Crops, Ministry of Agriculture.

Dul, J. (2016). Necessary Condition Analysis (NCA): Logic and Methodology of “Necessary but Not Sufficient” Causality. Organ.Res. Methods, 19(1), 10–52. https://doi.org/10.1177/1094428115584005

Dul, J. (2020). How to sample in necessary condition analysis (NCA). Eur. J. Int. Manag, 23(1), 1-13.

Fahmi, A., & Radjaguguk, B. (2013). Peran Gambut Terhadap Nitrogen Total Tanah di Lahan Rawa (The Role of Peat on Total Nitrogen in The Wetland Soils). Berita Biologi, 12(2), 223–230. (in Indonesian)

Fornell, C., & Larcker, D. F. (1981). Erratum: Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark.Res. 18(4), 427. https://doi.org/10.2307/3150980

Gnanasanjevi, G. Balasubramaniam, P., Sriram, N., et al. (2025). A PLS‑SEM approach to understanding tea growers’ adoption intentions of agroforestry boundary planting: an integrated theoretical framework. Agroforest Syst, 99, 99. https://doi.org/10.1007/s10457-025-01189-6

Hartatik, W., Subiksa, I. G. M., & Dariah, A. (2011). Sifat Fisika dan Kimia Lahan Gambut. In Pengelolaan Lahan Gambut Berkelanjutan (1st ed., p. 16). https://doi.org/10.21082/jsdl.v16n1.2022.9-21

Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2022). A Primer on Partial Least Squares Structural Equation Modeling. Long Range Planning, 46(1–2), 184–185. https://doi.org/10.1016/j.lrp.2013.01.002

Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2021). Evaluation of Formative Measurement Models. In Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (pp. 91-113). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7_5

Hair, J. F., Risher, J. J., Sarstedt, M., et al. (2019). When to use and how to report the results of PLS-SEM. Eur. Bus.Rev. 31(1), 2–24. https://doi.org/10.1108/ebr-11-2018-0203

Hikmatullah & Sukarman (2014). Physical and chemical properties of cultivated peat soils in four trials. J Trop Soil, 19(3), 131–141. https://doi.org/10.5400/jts.2014.v19i3.131-141

Hua-Bing, L., Jun-Qin, G., Jia-Tao, Z., et al. (2025). Water table decline reduces soil organic carbon by decreasing particulate organic carbon in peatlands: Beyond enzymic and mineral protection. CATENA, 259, 109347. https://doi.org/10.1016/j.catena.2025.109347

Kassim, N. Q. B., & Yaacob, A. (2019). Nutrient Dynamics in Peat Soil: Influence of Fluctuating Water Table. IOP Conference Series: Earth and Environmental Science, 327(1). https://doi.org/10.1088/1755-1315/327/1/012024

Kong, J., & Li, Y. (2025). Spatio-temporal variations in carbon sources, sinks, and footprints of cropland ecosystems in the Middle and Lower Yangtze River Plain of China, 2013–2022. Sci. Rep., 15(1), 1–27. https://doi.org/10.1038/s41598-025-98457-3

Kunarso, A., Bonner, M. T. L., Blanch, E. W., et al. (2022). Differences in tropical peat soil physical and chemical properties under different land uses: A Systematic review and meta-analysis. J. of Soil Sci. and Plant Nutr., 22(4), 4063–4083. https://doi.org/10.1007/s42729-022-01008-2

Kurnain, A. (2019). Hydrophysical properties of ombrotrophic peat under drained peatlands. Int. Agrophys., 33(3), 277–283. https://doi.org/10.31545/intagr/110773

Kurnianto, S., Selker, J., Boone Kauffman, J., et al. (2019). The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change, 24(4), 535–555. https://doi.org/10.1007/s11027-018-9802-3

Macrae, M. L., Devito, K. J., Strack, M., et al. (2013). Effect of water table drawdown on peatland nutrient dynamics: Implications for climate change. Biogeochemistry, 112(1–3), 661–676. https://doi.org/10.1007/s10533-012-9730-3

Mohamad, H., Sulaiman, M., Saida, N., et al. (2025). Klias peat soil: a depth-based property assessment. J. Soil Agric., 3(1), 9-28. https://doi.org/10.37934/sea.3.1.928a

Pu, Y., Lang, S., Li, Y., et al. (2024). Regulation of soil phosphorus availability in alpine meadows: Insights from phosphate-mobilising bacteria. Appl. Soil Ecol., 204, 105730. https://doi.org/10.1016/j.apsoil.2024.105730

Ramayah, T., Cheah, J.-H., Chuah, F., et al. (2016). Partial Least Squares Structural Equation Modeling. In Handbook of Market Research (Issue 1). Pearson Malaysia Sdn Bhd.

Renger, M., Wessolek, G., Schwärzel, K., et al. (2002). Aspects of peat conservation and water management. J. Plant Nutr. Soil Sci., 165(4), 487–493. https://doi.org/10.1002/1522-2624(200208)165:4<487::aid-jpln487>3.0.co;2-c

Richter, N. F., Schubring, S., Hauff, S., et al. (2020). When predictors of outcomes are necessary: guidelines for the combined use of PLS-SEM and NCA. Ind. Manag. Data Syst., 120(12), 2243–2267. https://doi.org/10.1108/imds-11-2019-0638

Smith, M. R., Rao, I. M., & Merchant, A. (2018). Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front.in Plant Sci, 871, 1–10. https://doi.org/10.3389/fpls.2018.01889

Sutejo, Y., Saggaff, A., Rahayu, W., et al. (2017). Physical and chemical characteristics of fibrous peat. AIP Conference Proceedings, 1903(June). https://doi.org/10.1063/1.5011609

Szajdak, L. W., Jezierski, A., Wegner, K., et al. (2020). Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules, 25(11). https://doi.org/10.3390/molecules25112587

Taiz, L., Zeiger, E., Møller, I., et al. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates.

Teh, C. B. S., Cheah, S. S., Kulaveerasingam, H. (2024). Development and validation of an oil palm model for a wide range of planting densities and soil textures in Malaysian growing conditions. Heliyon, 10(14), e32561. https://doi.org/10.1016/j.heliyon.2024.e32561

Troiville, J., Moisescu, O. I., Radomir, L. (2025). Using necessary condition analysis to complement multigroup analysis in partial least squares structural equation modeling, J. Retail. Consum. Serv., 82, 104018. https://doi.org/10.1016/j.jretconser.2024.104018

van der Sloot, M., Kleijn, D., De Deyn, G. B., et al. (2022). Carbon to nitrogen ratio and quantity of organic amendment interactively affect crop growth and soil mineral N retention. Crop Environ., 1(3), 161–167. https://doi.org/10.1016/j.crope.2022.08.001

Veloo, R., Ranst, E. Van, & Selliah, P. (2015). NJAS - Wageningen Journal of Life Sciences Peat Characteristics and its Impact on Oil Palm Yield. NJAS - Wageningen Journal of Life Sciences, 72–73, 33–40. https://doi.org/10.1016/j.njas.2014.11.001

Widiarso, B., Minardi, S., Komariah, Chandra, T. O., et al. (2020). Predicting peatland groundwater table and soil moisture dynamics affected by drainage level. Sains Tanah, 17(1), 42–49. https://doi.org/10.20961/stjssa.v17i1.38459

Wu, W., Du, X., Qin, Z., et al. (2024). Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China. Agriculture (Switzerland), 14(12). 2133; https://doi.org/10.3390/agriculture14122133

Zayed, O., Hewedy, O. A., Abdelmoteleb, A., et al. (2023). Nitrogen journey in plants: from uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10), 1443; https://doi.org/10.3390/biom13101443

Downloads

Publicado

2025-11-10

Como Citar

Darwati, I., Yusron, M., Purnomo, J., Suryadi, R., Rusmin, D., Trisilawati, O., Yatno, E., Pitono, J., Nurjaya, Djajadi, Syakir, M., Fidiyawati, E., & Hartati, R. S. . (2025). AVALIANDO A RELAÇÃO ENTRE A DINÂMICA DE NUTRIENTES E A PRODUÇÃO DE PALMA DE ÓLEO EM TURFAS USANDO SEM-PLS: UM ESTUDO DE CASO EM BENGKALIS, RIAU, INDONÉSIA. Scientia Agropecuaria, 17(1), 165-177. https://doi.org/10.17268/sci.agropecu.2026.012

Edição

Seção

Artículos originales