Candidate rhizobacteria as plant growth-promoters and root-knot nematode controllers in tomato plants

Autores

  • Karen Tatiana Chávez-Arteaga Departamento Bionintanga, NINTANGA S.A. Panamericana Norte km 10, Latacunga.
  • Ángel V. Cedeño-Moreira Laboratorio de Microbiología del Departamento de Biotecnología, Ciencias Agrarias, Universidad Técnica Estatal de Quevedo. Campus Ing. Manuel Haz Álvarez, km 1.5 vía a Santo Domingo de los Tsáchilas, EC.120501. Quevedo.
  • Hayron Fabricio Canchignia-Martínez Laboratorio de Microbiología del Departamento de Biotecnología, Ciencias Agrarias, Universidad Técnica Estatal de Quevedo. Campus Ing. Manuel Haz Álvarez, km 1.5 vía a Santo Domingo de los Tsáchilas, EC.120501. Quevedo.
  • Felipe Rafael Garcés Fiallos Laboratory of Phytopathology, Experimental Campus La Teodomira, Faculty of Agronomic Engineering, Technical University of Manabí.

DOI:

https://doi.org/10.17268/sci.agropecu.2022.038

Palavras-chave:

Meloidogyne incognita, Lycopersicum esculentum L, Ecuadorian rhizobacteria,, antagonistic activity, biological control

Resumo

Meloidogyne incognita root-knot nematode is one of the main causes of tomato root damage and consequently crop production losses. Thus, in in vitro conditions, the number of nematodes hatched eggs (%) at 4 and 6 days and nematode mortality (J2 stage) at 8, 18, and 24 h, were evaluated in Petri dishes containing the candidate rhizobacteria Enterobacter asburiae (BA4-19 and PM3-14), Acinetobacter calcoaceticus (BM2-12), Klebsiella variicola (BO3-4) and Serratia marcescens (PM3-8). The well-known Pseudomonas protegens (CHA0) and P. veronii (R4) were used as controls. In greenhouse conditions, plant height, root weight, and symptoms, as well as gall and nematode numbers, were determined in tomato plants infected by M. incognita and treated with the seven rhizobacteria. In addition, all variables were correlated using Pearson's analysis. In general, a significant correlation was observed among the variables of both experiments, showing the antagonistic capacity of the strains against nematode. It seems, that PM3-8 and PM3-14 strains reduce hatching, and cause mortality of nematodes J2 if compared with CHA0 and R4 strains. Likewise, tomato treated with BM2-12 strain shows a higher height and root weight, as well as a smaller number of galls and nematodes in their roots. This study provides evidence that PM3-8 and PM3-14 strains reduce the M. incognita egg hatching, and that the BM2-12 strain can be a plant growth-promoter potential of tomato plants.

Referências

Bridge, J. (1976). Other contributions: plant parasitic nematodes from the lowlands and highlands of Ecuador. Nematropica, 6, 18-23.

Calderón, J., Miño-Castro, G., Llumiquinga, P., Abbas, M., Gutiérrez-Gutiérrez, C., Segovia-Salcedo, M., & Proaño, K. (2022). Distribution of Meloidogyne spp. in agricultural crops of Ecuador: a literature review (1976–2021). CABI Reviews, 17, 028.

Canchignia-Martínez, H. F., Altimira, F., Montes, C., Sánchez, E., Tapia, E., et al. (2017). Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index. The Journal of General and Applied Microbiology, 63, 11-21.

Cedeño-Moreira, A. V., Romero-Meza, R. F., Auhing-Arcos, J. A., Mendoza-León, A. F., Pacheco, F. A., & Canchignia-Martínez, H. F. (2020). Caracterización de Phytophthora spp. y aplicación de rizobacterias con potencial en biocontrol de la enfermedad de la mazorca negra en Theobroma cacao variedad CCN-51. Scientia Agropecuaria, 11, 503-512.

Cedeño-Saavedra, D. A., Canchignia-Martínez, H. F., Cruz-Rosero, N., Guerra-Cuenca, F. F., Gaibor-Fernández, R., & Cedeño-Moreira, A. V. (2017). Rizobacterias que promueven el desarrollo e incremento en productividad de Glycine max L. Ciencia y Tecnología, 10, 7-15.

Chávez-Arteaga, K., Guato-Molina, J., Peñafiel-Jaramillo, M., Mestanza-Uquillas, C., & Canchignia-Martínez, H. F. (2018). Bacterias fluorescentes productoras de metabolitos antagó-nicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S. Ciencia y Tecnología, 11, 17-29.

Cunningham, L., Pitt, M., & Williams, H. D. (1997). The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Molecular Microbiology 24, 579-91.

dos Santos, M. F. A., Furlanetto, C., Almeida, M. R. A., Carneiro, M. D. G., Mota, F. C., et al. (2012). Biometrical, biological, biochemical and molecular characteristics of Meloidogyne incognita isolates and related species. European Journal of Plant Pathology 134, 671-684.

El-Sherif, M. A., Ali, A. H., & Barakat, M. I. (1999). Suppressive bacteria associated with plant parasitic nematodes in Egyptian agriculture. Japanese Journal of Nematology, 24, 55-59.

Erazo-Sandoval, N. S., Echeverría-Guadalupe, M. M., Jave-Nakayo, J. L., León-Reyes, H. A., Lindao-Córdova, V. A., Manzano-Ocaña, J. C., & Inca-Chunata, N. M. (2020). Effect of Pleurotus ostreatus (Jacq.) and Trichoderma harzianum (Rifai) on Meloidogyne incognita (Kofoid & White) in tomato (Solanum lycopersicum Mill.). Acta Scientiarum. Biological Sciences, 42, e47522.

Haque, M. M., Mosharaf, M. K., Khatun, M., Haque, M. A., Biswas, M. S., et al. (2020). Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Frontiers in Microbiology, 11, 542053.

Hallmann, J., Quadt-Hallmann, A., Rodrı́guez-Kábana, R., & Kloepper, J. W. (1998). Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology and Biochemistry, 30, 925-937.

Hallmann, J., Rodriguez-Kabana, R., & Kloepper, J. W. (1999). Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biology and Biochemistry, 31, 551-560.

Hamid, M., Siddiqui, I. A., & Shahid Shaukat, S. (2003). Improvement of Pseudomonas fluorescens CHA0 biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Letters in Applied Microbiology, 36, 239-44.

Hashem, M., & Abo-Elyousr, K. A. (2011). Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Protection, 30, 285-292.

Hesar, A. M., Rostami, M., Ghaderi, R., Danesh, Y. R., Jalal, A., da Silva, C. E., & Teixeira, M. C. M., (2022). Population genetic structure of Meloidogyne javanica recovered from different regions of Iran. Agriculture, 12, 1374.

Hussey, R. S., & Barker, K. R. (1973). Comparison of methods for collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, 57, 1025-1028.

Jung, C., & Wyss, U. (1999). New approaches to control plant parasitic nematodes. Applied Microbiology and Biotechnology, 51, 439-446.

Montes, C., Altimira, F., Canchignia, H., Castro, Á., Sánchez, E., et al. (2016). A draft genome sequence of Pseudomonas veronii R4: a grapevine (Vitis vinifera L.) root-associated strain with high biocontrol potential. Standards in Genomic Sciences, 11, 76.

Muimba-Kankolongo, A. (2018). Vegetable Production. In: Food Crop Production by Smallholder Farmers in Southern Africa. Challenges and Opportunities for Improvement. Academic Press. pp. 205-274.

Peñafiel-Jaramillo, M., Barrera-Álvarez, A. E., Torres-Navarrete, E. D., Canchignia-Martínez, H. F., Prieto-Encalada, H., & Morante-Carriel, J. (2016). Producción de ácido indol-3-acético por Pseudomonas veronii R4 y formación de raíces en hojas de vid “Thompson seedless” in vitro. Ciencia y Tecnología, 9, 31-36.

Siddiqui, Z. A. (2005). PGPR: Prospective Biocontrol Agents of Plant Pathogens. In: Siddiqui Z. A. PGPR: Biocontrol and Biofertilization. Springer, Dordrecht. pp. 111-142.

Siddiqui, I. A., & Shaukat, S. S. (2003). Endophytic bacteria prospect and opportunities for the biology control of plant-parasitic nematodes. Nematología Mediterránea, 31, 111-120.

Siddiqui, I., Hass, D., & Heeb, S. (2005). Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71, 5646–5649.

Sikora, R., Niere, B., & Dababat, A. (2008). Muatualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biological Control, 46, 15-23.

Timper, P., Koné, D., Yin, J., Ji, P., & Gardener, B. B. M. (2009). Evaluation of an antibiotic-producing strain of Pseudomonas fluorescens for suppression of plant-parasitic nematodes. Journal of Nematology, 41, 234-40.

Taylor, A., & Sasser, J. (1983). Biología, identificación y control de los nematodos de nódulo de la raíz. En Especies de Meloidogyne. Carolina del Norte. p. 109.

Wen, Y., Chen, K., Cui, J. K., Wang, T., Zhang, H., et al. (2022). First report of the root-knot nematode Meloidogyne incognita on Salvia miltiorrhiza Bunge in Henan Province, China. Plant Disease, 2022.

Downloads

Publicado

2022-12-31

Como Citar

Chávez-Arteaga, K. T. ., Cedeño-Moreira, Ángel V. ., Canchignia-Martínez, H. F. ., & Garcés Fiallos, F. R. (2022). Candidate rhizobacteria as plant growth-promoters and root-knot nematode controllers in tomato plants. Scientia Agropecuaria, 13(4), 423-432. https://doi.org/10.17268/sci.agropecu.2022.038

Edição

Seção

Artículos originales