Inteligencia artificial en acuicultura: fundamentos, aplicaciones y perspectivas futuras
DOI:
https://doi.org/10.17268/sci.agropecu.2022.008Palabras clave:
Acuicultura, inteligencia artificial, redes neuronales, aprendizaje automático, aprendizaje profundo, optimizaciónResumen
Los avances en las tecnologías de manejo de datos se están adecuando a resolver dificultades e impactos que la acuicultura manifiesta, algunos aspectos que a través de los años no se han podido manejar plenamente, ahora son más factibles de resolver, como la optimización de las variables que intervienen en el crecimiento e incremento de biomasa, la predicción de parámetros de calidad de agua para manejar y tomar decisiones durante el cultivo, la evaluación del medio ambiente acuícola y el impacto que genera la acuicultura, el diagnóstico de enfermedades de los peces para determinar tratamientos más puntuales, el manejo, gestión y cierre de granjas acuícolas. El objetivo del presente artículo fue revisar dentro de los últimos 20 años las diversas técnicas, metodologías, modelos, algoritmos, softwares y dispositivos que se utilizan dentro de los sistemas de inteligencia artificial, aprendizaje automático y aprendizaje profundo, para resolver de una manera más sencilla, rápida y precisa las dificultades e impactos que la acuicultura evidencia. Además, se explican los fundamentos de la inteligencia artificial, aprendizaje automático y aprendizaje profundo, así también las recomendaciones de estudio futuro sobre áreas de interés en acuicultura, como la reducción de los costos de producción mediante la optimización de la alimentación en función de las buenas prácticas de acuicultura y parámetros de calidad de agua, la identificación del sexo en peces que no presentan dimorfismo sexual, la determinación de atributos de calidad como el grado de pigmentación en salmones y truchas.
Citas
Abadi, M., McMahan, H. B., Chu, A., Mironov, I., Zhang, L., Goodfellow, I., & Talwar, K. (2016). Deep learning with differential privacy. Proceedings of the ACM Conference on Computer and Communications Security, 24-28-October-2016, 308-318.
Adegboye, M. A., Aibinu, A. M., Kolo, J. G., Aliyu, I., Folorunso, T. A., & Lee, S. (2020). Incorporating intelligence in fish feeding system for dispensing feed based on fish feeding intensity. IEEE Access, 8(9093055) 91948-91960.
Ahmed, M. S., Aurpa, T. T., & Azad, M. A. K. (2021). Fish disease detection using image-based machine learning technique in aquaculture. Journal of King Saud University - Computer and Information Sciences. 1-13.
Ahmed, N., Thompson, S., & Glaser, M. (2019). Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environmental Management, 63(2), 159-172.
Ali, R., & Fauzi, M. S. M. (2019). The use of local binary pattern (LBP) feature extraction members of the mud crab genus Scylla. Pervasive Health: Pervasive Computing Technologies for Healthcare, 202-206.
Almero, V. J., Concepcion, R., Rosales, M., Vicerra, R. R., Bandala, A., & Dadios, E. (2019). An aquaculture-based binary classifier for fish detection using multilayer artificial neural network. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019.
Amat-Rodrigo, J. (2016). Análisis discriminante lineal (LDA) y análisis discriminante cuadrático (QDA). Available under a Attribution 4.0 International (CC BY 4.0).
Angani, A., Lee, C., Lee, S., & Shin, K. J. (2019). Realization of eel fish farm with artificial intelligence part 3: 5G based mobile remote control. Paper presented at the 2019 IEEE International Conference on Architecture, Construction, Environment and Hydraulics, ICACEH 2019, 101-104.
Angani, A., Oh, S. M., Kim, E. S., & Shin, K. J. (2019). Realization of eel fish farm with artificial intelligence Part2: IoT based flow control using MQTT. 2019 IEEE International Conference on Architecture, Construction, Environment and Hydraulics, ICACEH 2019, 97-100.
Arias, R., Santa, J. J., & Veloza, J. D. J. (2013). Aplicación del aprendizaje automático con árboles de decisión en el diagnóstico médico. Cultura Del Cuidado, 10(1), 63–72.
Armstrong, G., & Verhoeven, T. P. (2020). Machine learning analyses of bacterial oligonucleotide frequencies to assess the benthic impact of aquaculture. Aquaculture Environment Interactions, 12, 131-137.
Atia, A. D. M., Fahmy, F. H., Ahmed, N. M., & Dorrah, H. T. (2011a). Solar thermal aquaculture system controller based on artificial neural network. World Academy of Science, Engineering and Technology, 73, 378-384.
Atia, D. M., Fahmy, F. H., Ahmed, N. M., & Dorrah, H. T. (2011b). Artificial intelligence techniques based on aquaculture solar thermal water heating system control. Renewable Energy and Power Quality Journal, 1(9), 1027-1034.
Bakshi, S., Jagadev, A. K., Dehuri, S., & Wang, G. (2014). Enhancing scalability and accuracy of recommendation systems using unsupervised learning and particle swarm optimization. Applied Soft Computing Journal, 15, 21-29.
Barbona, I., & Beltrán, C. (2018). Aplicación del algoritmo Boosting Adaptativo (ADABOOST) a un problema de clasificación automática de textos. Revista de Epistemología y Ciencias Humanas. Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina.
Barulin, N. V. (2019). Using machine learning algorithms to analyse the scute structure and sex identification of sterlet Acipenser ruthenus (Acipenseridae). Aquaculture Research, 50(10), 2810-2825.
Boggio, G. (1997). Modelo de regresión logística aplicado a un estudio sobre enfermedad de Chagas. Cadernos de Saúde Publica. Brasil.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Cánovas-García, F., Alonso-Sarría, F., & Gomariz-Castillo, F. (2016). Modificación del algoritmo Random Forest para su empleo en clasificación de imágenes de teledetección. Aplicaciones de las Tecnologías de la Información Geográfica (TIG) para el desarrollo económico sostenible XVII Congreso Nacional de Tecnologías de Información Geográfica, Málaga.
Cao, X., Liu, Y., Wang, J., Liu, C., & Duan, Q. (2020). Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network. Aquacultural Engineering, 91, 102122.
Carbajal, J. J., & Śanchez, L. P. (2008). Classification based on fuzzy inference systems for artificial habitat quality in shrimp farming. 7th Mexican International Conference on Artificial Intelligence - Proceedings of the Special Session, MICAI 2008, 388-392.
Carbajal-Hernández, J. J., & Sánchez-Fernández, L. P. (2017). Neural network modelling for dissolved oxygen effects in extensive Litopenaeus vannamei culture. 15th Mexican International Conference on Artificial Intelligence, MICAI 2016, Cancun 23-28 October 2016. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10062(LNAI), 132-140.
Carrasquilla-Batista, A., Chacón-Rodríguez, A., Núñez-Montero, K., Gómez-Espinoza, O., Valverde, J. & Guerrero-Barrantes, M. (2016). Regresión lineal simple y múltiple: aplicación en la predicción de variables naturales relacionadas con el crecimiento microalgal. Tecnología en Marcha. Encuentro de Investigación y Extensión 2016. Pág 33-45.
Cevallos-Ampuero, J. (2004). Aplicación de redes neuronales para optimizar problemas multirespuesta en mejora de la calidad. Revista de la Facultad de Ingeniería Industrial, 2(7), 31-34
Chang, C., Wang, J., Wu, J., Hsieh, Y., Wu, T., Cheng, S., & Lin, C. (2021). Applying artificial intelligence (AI) techniques to implement a practical smart cage aquaculture management system. Journal of Medical and Biological Engineering, 41(5), 652-658.
Chen, C., Chang, C., Chen, C., Chang, T., Zeng, X., Liu, J., & Lu, W. (2018). Developing an ornamental fish warehousing system based on big video data. International Journal of Automation and Smart Technology, 8(2), 79-83.
Chen, F., Du, Y., Qiu, T., Xu, Z., Zhou, L., Xu, J., & Sun, J. (2021). Design of an intelligent variable-flow recirculating aquaculture system based on machine learning methods. Applied Sciences (Switzerland), 11(14).
Chen, J. C., Chang, N. B., & Shieh, W. K. (2003). Assessing wastewater reclamation potential by neural network model. Engineering Applications of Artificial Intelligence, 16(2 SPEC.), 149-157.
Chen, L., Yang, X., Sun, C., Wang, Y., Xu, D., & Zhou, C. (2020). Feed intake prediction model for group fish using the MEA-BP neural network in intensive aquaculture. Information Processing in Agriculture, 7(2), 261-271.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Paper presented at the Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016 785-794.
Chen, Y., Cheng, Q., Cheng, Y., Yu, H., & Zhang, C. (2017). Short-term prediction system of water temperature in pond aquaculture based on GA-BP neural network. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 48(8), 172-178.
Chen, Y., Zhen, Z., Yu, H., & Xu, J. (2017). Application of fault tree analysis and fuzzy neural networks to fault diagnosis in the internet of things (IoT) for aquaculture. Sensors (Switzerland), 17(1).
Cho, C. Y., Hynes, J. D., Wood, K. R., & Yoshida, H. K. (1994). Development of high-nutrient-dense, low-pollution diets and prediction of aquaculture wastes using biological approaches. Aquaculture, 124(1-4), 293-305.
Chukkapalli, S. S. L., Aziz, S. B., Alotaibi, N., Mittal, S., Gupta, M., & Abdelsalam, M. (2021). Ontology driven AI and access control systems for smart fisheries. Paper presented at the SAT-CPS 2021 - Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems, 59-68.
Cobo, A., Llorente, I., & Luna, L. (2015). Swarm intelligence in optimal management of aquaculture farms. International Series in Operations Research and Management Science 224, 221–239.
Conte, F. S., & Ahmadi, A. (2016). Mermaid: A new computer algorithm applied to the classification of shellfish growing areas of Virginia, USA. Paper presented at the 21st Century Watershed Technology Conference and Workshop 2016: Improving Quality of Water Resources at Local, Basin and Regional Scales, 2016-January 1-9.
Cordier, T., Esling, P., Lejzerowicz, F., Visco, J., Ouadahi, A., Martins, C., & Pawlowski, J. (2017). Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environmental Science and Technology, 51(16), 9118-9126.
Costa, C., Scardi, M., Vitalini, V., & Cataudella, S. (2009). A dual camera system for counting and sizing northern bluefin tuna (Thunnus thynnus; linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi-automatic artificial neural network tool. Aquaculture, 291(3-4), 161-167.
Coz-Rakovac, R., Topic Popovic, N., Smuc, T., Strunjak-Perovic, I., & Jadan, M. (2009). Classification accuracy of algorithms for blood chemistry data for three aquaculture-affected marine fish species. Fish Physiology and Biochemistry, 35(4), 641-647.
Deng, C., Gao, Y., Gu, J., Miao, X., & Li, S. (2010). Research on the growth model of aquaculture organisms based on neural network expert system. Paper presented at the Proceedings - 2010 6th International Conference on Natural Computation, ICNC 2010, 4 1812-1815.
Deng, L., & Yu, D. (2013). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3-4), 197-387.
D'Este, C., Timms, G., Turnbull, A., & Rahman, A. (2014). Ensemble aggregation methods for relocating models of rare events. Engineering Applications of Artificial Intelligence, 34, 58-65.
Espinoza, J. (2010). Aplicación de algoritmos Random Forest y XGBoost en una base de solicitudes de tarjetas de crédito. Ingeniería Investigación y Tecnología volumen XXI (3).
Fabregas, A. C., Cruz, D., & Marmeto, M. D. (2018). SUGPO: A white spot disease detection in shrimps using hybrid neural networks with fuzzy logic algorithm. ACM International Conference Proceeding Series, 199-203.
Fan, J., Zhao, J., An, W., & Hu, Y. (2019). Marine floating raft aquaculture detection of GF-3 PolSAR images based on collective multikernel fuzzy clustering. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(8), 2741-2754.
Faust, A., Palunko, I., Cruz, P., Fierro, R., & Tapia, L. (2017). Automated aerial suspended cargo delivery through reinforcement learning. Artificial Intelligence, 247, 381-398.
Feijoo, S., Pintos, J., & Hernandez, C. (1989). Knowledge engineering for diagnosis of piscine diseases. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1, 313-314.
Fernandes, A. F. A., Turra, E. M., de Alvarenga, É. R., Passafaro, T. L., Lopes, F. B., Alves, G. F. O., & Rosa, G. J. M. (2020). Deep learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Computers and Electronics in Agriculture, 170.
Fu, Y., Ye, Z., Deng, J., Zheng, X., Huang, Y., Yang, W., & Wang, K. (2019). Finer resolution mapping of marine aquaculture areas using world view-2 imagery and a hierarchical cascade convolutional neural network. Remote Sensing, 11(14)
Galezan, F. H., Bayati, M. R., Safari, O., & Rohani, A. (2020). Modeling oxygen and organic matter concentration in the intensive Rainbow trout (Oncorhynchus mykiss) rearing system. Environmental Monitoring and Assessment, 192(4), 223.
Gao, G., Xiao, K., & Chen, M. (2019). An intelligent IoT-based control and traceability system to forecast and maintain water quality in freshwater fish farms. Computers and Electronics in Agriculture, 166.
García, C., Salemerón, R., Rodríguez, A. & García, J. (2017). Regresión cresta, algunos inconvenientes. Conference: XXXI Reunión Internacional de Economía Aplicada. ASEPELT XXXI. At: Lisboa Volume: Annales of Applied Economic ASEPELT.
Ghiassi, M., & Lee, S. (2018). A domain transferable lexicon set for twitter sentiment analysis using a supervised machine learning approach. Expert Systems with Applications, 106, 197-216.
Gowrishankar, K., Nithiyananthan, K., Mani, P. R., & Venkatesan, G. (2017). Neural network based mathematical model for feed management technique in aquaculture. Journal of Advanced Research in Dynamical and Control Systems, 18, 1142-1161.
Gustilo, R. C., & Dadios, E. (2011). Optimal control of prawn aquaculture water quality index using artificial neural networks. Proceedings of the 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems, CIS 2011, 266-271.
Gutiérrez-Estrada, J. C., Pulido-Calvo, I., Peregrín, A., García-Gálvez, A., Báez, J. C., Bellido, J. J., & López, J. A. (2021). Integrating local environmental data and information from non-driven citizen science to estimate jellyfish abundance in Costa del Sol (Southern Spain). Estuarine, Coastal and Shelf Science, 249, 107112
Halide, H., Stigebrandt, A., Rehbein, M., & McKinnon, A. D. (2009). Developing a decision support system for sustainable cage aquaculture. Environmental Modelling and Software, 24(6), 694-702.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. 703 p.
He, D., & Zhang, L. (2012). The water quality monitoring system based on WSN. 2012 2nd International Conference on Consumer Electronics, Communications and Networks, CEC Net 2012 - Proceedings, 3661-3664.
Hermawan, S. (2018). The benefit of decision support system as sustainable environment technology to utilize coastal abundant resources in Indonesia. MATEC Web of Conferences, 164.
Hernández, J. J. C., Fernández, L. P. S., & Ibarra, M. A. M. (2010). Assessment of the artificial habitat in shrimp aquaculture using environmental pattern classification. Lecture Notes in Computer Science (including subseries in Artificial Intelligence and Lecture Notes in Bioinformatics) 6134 (LNCS), 113–121.
Hernández, J. J. C., Fernández, L. P. S., & Pogrebnyak, O. (2011). Assessment and prediction of water quality in shrimp culture using signal processing techniques. Aquaculture International, 19(6), 1083-1104.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013) Applied Logistic Regression. Vol. 398, John Wiley & Sons.
Hosmer, D. W., & Lemeshow, S. (1989). Applied Logistic Regression New York: John Wiley & Sons.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. (2000). Applied Logistic Regression, 2nd ed. New York; Chichester, Wiley.
Hu, Z., Li, R., Xia, X., Yu, C., Fan, X., & Zhao, Y. (2020). A method overview in smart aquaculture. Environmental Monitoring and Assessment, 192(8).
Hua, X., Tian, Y., Chen, C., & Xing, K. (2013). Modified study of routing algorithm based on ACO for intensive aquaculture WSN. Applied Mechanics and Materials, 278-280, 974-977
Huan, J., & Liu, X. (2016). Dissolved oxygen prediction in water based on K-means clustering and ELM neural network for aquaculture. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 32(17), 174-181.
Huang, I., Hung, C., Kuang, S., Chang, Y., Huang, K., Tsai, C., & Feng, K. (2019). The prototype of a smart underwater surveillance system for shrimp farming. Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing, ICAM 2018, 177-180.
Imai, T., Arai, K., & Kobayashi, T. (2019). Smart aquaculture system: A remote feeding system with smartphones. 2019 IEEE 23rd International Symposium on Consumer Technologies, ISCT 2019, 93-96.
Isa, I. S., Norzrin, N. N., Sulaiman, S. N., Hamzaid, N. A., & Maruzuki, M. I. F. (2020). CNN transfer learning of shrimp detection for underwater vision system. Proceeding - 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering, ICITAMEE 2020, 226-231.
John, G. H., & Langley, P. (1995) Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 338-345.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
Kamisetti, S. N. R., Arvind Dattatreye Shaligram, & Sadistap, S. S. (2012). Smart electronic system for pond management in freshwater aquaculture. ISIEA 2012 - 2012 IEEE Symposium on Industrial Electronics and Applications, 173-175.
Kao, L., & Chang, F. (2011). Applying ANNs for estimating the regional arsenic pollution in groundwater. Journal of Taiwan Agricultural Engineering, 57(3), 88-102.
Karimanzira, D., & Rauschenbach, T. (2021). An intelligent management system for aquaponics. [Ein intelligentes Managementsystem für die Aquaponik]. At-Automatisierungstechnik, 69(4), 345-350.
Khaoula, T., Abdelouahid, R. A., Ezzahoui, I., & Marzak, A. (2021). Architecture design of monitoring and controlling of IoT-based aquaponics system powered by solar energy. Procedia Computer Science, 191. 493-498.
King, S. C., & Pushchak, R. (2008). Incorporating cumulative effects into environmental assessments of mariculture: Limitations and failures of current siting methods. Environmental Impact Assessment Review, 28(8), 572-586.
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica (Ljubljana), 31(3), 249-268.
Kuroki, H., Ikeoka, H., & Isawa, K. (2020). Development of simulator for efficient aquaculture of Sillago japonica using reinforcement learning. Proceedings of International Conference on Image Processing and Robotics, ICIPRoB 2020.
Lea, R., Dohmann, E., Prebilsky, W., Lee, P., Turk, P., & Ying, H. (1998). A fuzzy logic application to aquaculture environment control. Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, 29-33.
Lee, J., Roh, M., Kim, K., & Lee, D. (2007). Design of autonomous underwater vehicles for cage aquafarms. IEEE Intelligent Vehicles Symposium, Proceedings, 938-943.
Li, B., Huang, X., Song, N., Wang, Q., Zhang, G., & Nie, L. (2020). Development of an aquaculture suitability assessment system of sea areas based on plug-in technology. Proceedings - 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2020, 250-254.
Li, D., Hao, Y., & Duan, Y. (2020). Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: A review. Reviews in Aquaculture, 12(3), 1390-1411.
Li, D., Zhu, W., Duan, Y., & Fu, Z. (2006). Toward developing a tele-diagnosis system on fish disease. IFIP International Federation for Information Processing, 217, 445 – 454.
Li, F., Du, M., Gao, Y., Jiang, W., Li, W., Dong, S., & Jiang, Z. (2020). Temporal and spatial distribution variation of picoplankton and environmental impact factors in Sanggou Bay. Journal of Fisheries of China, 44(7), 1100-1111.
Li, F., Li, D., Wei, Y., Daokun, M., & Ding, Q. (2010). Dissolved oxygen prediction in Apostichopus japonicus aquaculture ponds by BP neural network and AR model. Sensor Letters, 8(1), 95-101.
Li, F., Wei, Y., Chen, Y., Li, D., & Zhang, X. (2015). An intelligent optical dissolved oxygen measurement method based on a fluorescent quenching mechanism. Sensors (Switzerland), 15(12), 30913-30926.
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors (Switzerland), 18(8), 2674.
Lin, C., Xu, L., & Liu, Z. (2016). Digitization of free-swimming fish based on binocular stereo vision. Proceedings - 2015 8th International Symposium on Computational Intelligence and Design, ISCID 2015, 2, 363-368.
Liu, H., Liu, T., Gu, Y., Li, P., Zhai, F., Huang, H., & He, S. (2021). A high-density fish school segmentation framework for biomass statistics in a deep-sea cage. Ecological Informatics, 64.
Liu, S., Yan, M., Tai, H., Xu, L., & Li, D. (2012). Prediction of dissolved oxygen content in aquaculture of Hyriopsis cumingii using Elman neural network. IFIP Advances in Information and Communication Technology, 370(AICT), 508 - 518
Lu, G., & Luo, M. (2020). Genomes of major fishes in world fisheries and aquaculture: Status, application and perspective. Aquaculture and Fisheries, 5(4), 163-173.
Lyon, A., Mooney, A., & Grossel, G. (2013). Using aquatichealth.net to detect emerging trends in aquatic animal health. Agriculture (Switzerland), 3(2), 299-309.
Ma, Y., Wei, W., & Zhou, C. (2020). Research on body mass estimation method of Koi broodstock based on feeding state image recognition technology. Journal of Physics: Conference Series, 1631(1).
Manoharan, H., Teekaraman, Y., Kshirsagar, P. R., Sundaramurthy, S., & Manoharan, A. (2020). Examining the effect of aquaculture using sensor-based technology with machine learning algorithm. Aquaculture Research, 51(11), 4748-4758.
Martínez, P., Viñas, A. M., Sánchez, L., Díaz, N., Ribas, L., & Piferrer, F. (2014). Genetic architecture of sex determination in fish: Applications to sex ratio control in aquaculture. Frontiers in Genetics, 5(SEP).
Mei, J., & Gui, J. (2015). Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Science China Life Sciences, 58(2), 124-136.
Miao, X., Deng, C., Li, X., Gao, Y. & He, D. (2010). A hybrid neural network and genetic algorithm model for predicting dissolved oxygen in an aquaculture pond. Proceedings - 2010 International Conference on Web Information Systems and Mining, WISM 2010, 1 415-419.
Mizianty, M., Kurgan, L., & Ogiela, M. (2010). Discretization as the enabling technique for the Naïve Bayes and semi-Naïve Bayes-based classification. The Knowledge Engineering Review, 25(4), 421-449.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G. & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
Mouloodi, S., Rahmanpanah, H., Gohari, S., Burvill, C., Ming, K., & Davies, H. (2021). What can artificial intelligence and machine learning tell us? A review of applications to equine biomechanical research. Journal of the Mechanical Behavior of Biomedical Materials, 123, 104728.
Ng, A. K., & Mahkeswaran, R. (2021). Emerging and disruptive technologies for urban farming: A review and assessment. Journal of Physics: Conference Series, 2003(1), 012008.
Nielsen, F. (2016). Hierarchical Clustering. In: Introduction to HPC with MPI for Data Science. Undergraduate Topics in Computer Science. Springer, Cham.
Palaiokostas, C. (2021). Predicting for disease resistance in aquaculture species using machine learning models. Aquaculture Reports, 20.
Pamungkas, A., Zulkarnain, R., Adiyana, K., Waryanto, Nugroho, H., & Saragih, A. S. (2020). Application of artificial neural networks to forecast Litopenaeus vannamei and Penaeus monodon harvests in Indramayu regency, Indonesia. Paper presented at the IOP Conference Series: Earth and Environmental Science, 521(1), 012018.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825-2830.
Petrov, A., & Popov, A. (2021). Computer vision technology in the development of an ultrasonic repeller. Lecture Notes in Civil Engineering, 130 (LNCE), 447–458.
Printista, A., Errecalde, M. & Montoya, C. (2000). Una implementación paralela del algoritmo de Q-Learning basada en un esquema de comunicación con caché. Proyecto UNSL Nº 3384031 Departamento de Informática Universidad Nacional de San Luis. Argentina.
Rashid, M. M., Nayan, A., Rahman, M. O., Simi, S. A., Saha, J., & Kibria, M. G. (2021). IoT based smart water quality prediction for biofloc aquaculture. International Journal of Advanced Computer Science and Applications, 12(6), 56-62.
Ren, Q., Wang, X., Li, W., Wei, Y., & An, D. (2020). Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network. Aquacultural Engineering, 90, 102085.
Sabari, M., Aswinth, P., Karthik, T., & Bharath Kumar, C. (2020). Water quality monitoring system based on IoT. ICDCS 2020 - 2020 5th International Conference on Devices, Circuits and Systems, 279-282.
Saberioon, M., & Císař, P. (2018). Automated within tank fish mass estimation using infrared reflection system. Computers and Electronics in Agriculture, 150, 484-492.
Sabo-Attwood, T., Apul, O. G., Bisesi, J. H., Kane, A. S., & Saleh, N. B. (2021). Nano-scale applications in aquaculture: Opportunities for improved production and disease control. Journal of Fish Diseases, 44(4), 359-370.
Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 44(1-2), 207-219.
Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data, 7(1), 1-29.
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2, 160.
Sellars, S., Nguyen, P., Chu, W., Gao, X., Hsu, K., & Sorooshian, S. (2013). Computational earth science: Big data transformed into insight. Eos (United States), 94(32), 277-278.
Shahriar, M. S., & McCulluch, J. (2014). A dynamic data-driven decision support for aquaculture farm closure. Procedia Computer Science, 29. 1236-1245.
Sheehan, E. V., Bridger, D., Nancollas, S. J., & Pittman, S. J. (2020). PelagiCam: A novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures. Environmental Monitoring and Assessment, 192(1), 11.
Shi, P., Yuan, Y., Kuang, L., Li, G., & Zhang, H. (2018a). Water temperature prediction in pond aquaculture based on EMD-IGA-SELM neural network. Chinese Society for Agricultural Machinery, 49(11), 312-319.
Shi, P., Yuan, Y., Kuang, L., Zhang, H., & Li, G. (2018b). Study on water temperature prediction in industrial aquaculture based on GA-SELM neural network. Chinese Journal of Sensors and Actuators, 31(10), 1592-1597.
Sousa, D., Sargento, S., Pereira, A., & Luís, M. (2019). Self-adaptive team of aquatic drones with a communication network for aquaculture. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11805(LNAI), 569-580
Stavrakidis-Zachou, O., Sturm, A., Lika, K., Wätzold, F., & Papandroulakis, N. (2021). ClimeGreAq: A software based DSS for the climate change adaptation of Greek aquaculture. Environmental Modelling and Software, 143, 105121.
Su, J., Chen, J., Wen, J., Xie, W., & Lin, M. (2020). Analysis decision-making system for aquaculture water quality based on deep learning. Journal of Physics: Conference Series, 1544(1), 012028.
Sullivan, C. V., Chapman, R. W., Reading, B. J., & Anderson, P. E. (2015). Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions. General and Comparative Endocrinology, 221, 23-30.
Sun, M., Hassan, S. G., & Li, D. (2016). Models for estimating feed intake in aquaculture: A review. Computers and Electronics in Agriculture, 127, 425-438.
Suo, F., Huang, K., Ling, G., Li, Y., & Xiang, J. (2020). Fish keypoints detection for ecology monitoring based on underwater visual intelligence. 16th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2020, 542-547.
Ta, X., & Wei, Y. (2018). Research on a dissolved oxygen prediction method for recirculating aquaculture systems based on a convolution neural network. Computers and Electronics in Agriculture, 145, 302-310.
Ta, X., & Wei, Y. (2018). Research on a dissolved oxygen prediction method for recirculating aquaculture systems based on a convolution neural network. Computers and Electronics in Agriculture, 145, 302-310.
Ta, X., An, D., & Wei, Y. (2019). Dissolved oxygen prediction method for recirculating aquaculture system, based on a timing attenuation matrix and a convolutional neural network. Aquaculture, 503, 26-33.
Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009,
Tian, D., Li, N., Huang, H., Fu, Z., & Zhang, X. (2009). A decision support system for evaluating quality safety risk contaminated by water pollution in aquaculture pond. IFIP Advances in Information and Communication Technology, 293, 643 - 652
Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation. A review. Information Processing in Agriculture, 7(1), 1-19.
Ubina, N., Cheng, S., Chang, C., & Chen, H. (2021). Evaluating fish feeding intensity in aquaculture with convolutional neural networks. Aquacultural Engineering, 94.
Urbanová, P., Vaněk, J., Souček, P., Šys, D., Císař, P., & Železný, M. (2017). Bioimaging – autothresholding and segmentation via neural networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10208(LNCS), 358–368.
Uz, S. S., Ames, T. J., Memarsadeghi, N., McDonnell, S. M., Blough, N. V., Mehta, A. V., & McKay, J. R. (2020). Supporting aquaculture in the Chesapeake Bay using artificial intelligence to detect poor water quality with remote sensing. International Geoscience and Remote Sensing Symposium (IGARSS), 3629-3632.
Wang, D., Fan, J., Han, M., Guo, P., & Lu, Y. (2019). Marine floating raft aquaculture back scattering feature analysis based on ISAR imagery. Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 1902-1905.
Wang, R., Liu, Q., He, Y., & Fu, Z. (2009). A decision support system for DO prediction based on fuzzy model and neural network. IFIP Advances in Information and Communication Technology, 293, 689–699.
Watkins, C. J. C. H. & Dayan, P. (1992) Q-Learning. Machine Learning, 8, 279-292.
Weinstein, B. G. (2018). A computer vision for animal ecology. Journal of Animal Ecology, 87(3), 533-545.
Wen, Y., Li, M., & Ye, Y. (2020). MapReduce-based BP neural network classification of aquaculture water quality. Proceedings - 2020 International Conference on Computer Information and Big Data Applications, CIBDA 2020, 132-135.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. (pp. 1-621).
Wu, C., Chen, Y., Liu, Y., & Yang, X. (2016). Decision tree induction with a constrained number of leaf nodes. Applied Intelligence, 45(3), 673-685.
Xiaoshuan, Z., Zetian, F., Wengui, C., Dong, T., & Jian, Z. (2009). Applying evolutionary prototyping model in developing FIDSS: An intelligent decision support system for fish disease/health management. Expert Systems with Applications, 36(2 PART 2), 3901-3913.
Yang, C., Chen, H., Chang, E., Kristiani, E., Nguyen, K. L. P., & Chang, J. (2021). Current advances and future challenges of AIoT applications in particulate matters (PM) monitoring and control. Journal of Hazardous Materials, 419.
Yang, C., Yu, M., Li, Y., Hu, F., Jiang, Y., Liu, Q., & Gu, J. (2019). Big earth data analytics: A survey. Big Earth Data, 3(2), 83-107.
Yang, D., Chen, F., & Zhou, Y. (2015). A novel eutrophication assessment models for aquaculture water area via artificial neural networks. Journal of Computational and Theoretical Nanoscience, 12(9), 2909-2912.
Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2021). Deep learning for smart fish farming: Applications, opportunities and challenges. Reviews in Aquaculture, 13(1), 66-90.
Yang, Y., Tai, H., & Li, D. (2014). Real-time optimized prediction model for dissolved oxygen in crab aquaculture ponds using back propagation neural network. Sensor Letters, 12(3-5), 723-729.
Yongqiang, C., Shaofang, L. I., Hongmei, L., Pin, T., & Yilin, C. (2019). Application of intelligent technology in animal husbandry and aquaculture industry. Paper presented at the 14th International Conference on Computer Science and Education, ICCSE 2019, 335-339.
Yu, H., Zheng, R., Wang, Z., & Bu, W. (2015). Application of neural network based PID method for temperature control of aquaculture greenhouse. American Society of Agricultural and Biological Engineers Annual International Meeting 2015, 3. 1881-1891.
Zenger, K. R., Khatkar, M. S., Jones, D. B., Khalilisamani, N., Jerry, D. R., & Raadsma, H. W. (2019). Genomic selection in aquaculture: Application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Frontiers in Genetics, 9, 00693.
Zha, Y., Zhang, Q., Zhao, Y., & Hang, B. (2021). Prediction of dissolved oxygen in aquaculture based on 3D convolution and CLSTM neural network. Yingyong Kexue Xuebao/Journal of Applied Sciences, 39(4), 615-626.
Zhao, S., Zhang, S., Liu, J., Wang, H., Zhu, J., Li, D., & Zhao, R. (2021). Application of machine learning in intelligent fish aquaculture: A review. Aquaculture, 540.
Zhou, C., Lin, K., Xu, D., Sun, C., Chen, L., Zhang, S., & Guo, Q. (2019). Computer vision and feeding behavior based intelligent feeding controller for fish in aquaculture. IFIP Advances in Information and Communication Technology, 545, 98-107.
Zhou, C., Sun, C. H., Lin, K., Xu, D. M., Guo, Q., Chen, L., & Yang, X. T. (2018). Handling water reflections for computer vision in aquaculture. Transactions of the ASABE, 61(2), 469-479.
Zhou, C., Xu, D., Chen, L., Zhang, S., Sun, C., Yang, X., & Wang, Y. (2019). Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture, 507, 457-465.
Zhu, M., Wang, X., & Wang, Y. (2018). Human-like autonomous car-following model with deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 97, 348-368.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).