Effect of antibiosis, antixenosis and natural variation of trichomes of wild and commercial tomato species on the development of Bactericera cockerelli
DOI:
https://doi.org/10.17268/sci.agropecu.2023.041Keywords:
Antixenosis, preference, resistance, wild tomatoes, tomato psyllid, antibiosisAbstract
Bactericera cockerelli is an economically relevant pest of solanaceous crops. The presence of leaf trichomes that certain wild species have constitutes important genetic resources for plant breeding programs in terms of resistance to pests. In this study, the influence of leaf trichomes of wild species and commercial tomato cultivars on the preference, development and fecundity of B. cockerelli was evaluated. The results showed that wild species were less preferred by the psyllid than commercial cultivars. Insects showed a lower settlement percentage in S. habrochaites compared to the other species. Regarding survival, the lowest percentage developed in S. habrochaites with 24% and S. arcanum with 40%. The lowest oviposition average was found in S. habrochaites with two eggs, which did not hatch, in addition to being the only species that showed the presence of glandular trichomes type IV (113.86 ± 48.1) and VIc (27.3 ± 2.3) per mm2, and its presence was negatively correlated with the number of perched adults. S. arcanum was another species that negatively influenced the behavior and development of the insects; however, these attributes were not due to the presence of trichomes. The defense mechanisms expressed by S. habrochaites and S. arcanum towards B. cockerelli can be used as a resource for gene introgression for the management of this pest by reducing its biological potential.
References
Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2009). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp. Appl. Acarol., 47, 35–47. https://doi.org/10.1007/s10493-008-9192-4
Almeida, K. C. de, Resende, J. T. V. de Hata, F. T., Oliveira, L. V. B., & Neto, J. G. (2023). Characterization of Solanum sp. Lycopersicon section for density and types of leaf trichomes and resistance to whitefly and tomato pinworm. Sci. Hortic. (Amsterdam), 310, 111746. https://doi.org/10.1016/j.scienta.2022.111746
Avila, C. A., Marconi, T. G., Viloria, Z., Kurpis, J., & Del Rio, S. Y. (2019). Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum. Sci. Reports, 9, 1–11. https://doi.org/10.1038/s41598-019-50379-7
Bai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Ann. Bot., 100, 1085–1094. https://doi.org/10.1093/aob/mcm150
Bleeker, P. M., Mirabella, R., Diergaarde, P. J., VanDoorn, A., Tissier, A., et al. (2012). Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc. Natl. Acad. Sci., 109, 20124–20129. https://doi.org/10.1073/PNAS.1208756109
Cerna-Chávez, E., Hernández-Bautista, O., Ochoa-Fuentes, Y. M., Landeros-Flores, J., Aguirre-Uribe, L. A., & Hernández-Juárez, A. (2018). Morphometric of immatures and life tables of Bactericera cockerelli (Hemiptera: Triozidae) from populations of Northeastern Mexico. Rev. Colomb. Entomol., 44, 53–60. https://doi.org/10.25100/socolen.v44i1.6543
Channarayappa, S. G., Muniyappa, V., & Frist, R. H. (1992). Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can. J. Bot., 70, 2184–2192. https://doi.org/10.1139/b92-270
Dawood, M. H., & Snyder, J. C. (2020). The Alcohol and Epoxy Alcohol of Zingiberene, Produced in Trichomes of Wild Tomato, Are More Repellent to Spider Mites Than Zingiberene. Front. Plant Sci., 11, 1. https://doi.org/10.3389/fpls.2020.00035
de Oliveira, J. R. F., de Resende, J. T. V., Maluf, W. R., Lucini, T., de Lima Filho, R. B., de Lima, I. P., & Nardi, C. (2018). Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of tetranychus urticae. Front. Plant Sci., 9, 1132. https://doi.org/10.3389/fpls.2018.01132
Delgado-Ortiz, J. C., Beltrán-Beache, M., Cerna-Chávez, E., Aguirre-Uribe, L. A., Landero-Flores, J., Rodríguez-Pagaza, Y., & Ochoa-Fuentes, Y. M. (2019). Candidatus Liberibacter solanacearum patógeno vascular de solanáceas: Diagnóstico y control. TIP Rev. Espec. en Delgado-Ortiz, J. C. et al. Candidatus Lib. solanacearum patógeno Vasc. solanáceas Diagnó 22, 1–12. https://doi.org/10.22201/fesz.23958723e.2019.0.177
Eigenbrode, S. D., Trumble, J. T., & Jones, R. A. (2019). Resistance to Beet Armyworm, Hemipterans, and Liriomyza spp. in Lycopersicon Accessions. J. Am. Soc. Hortic. Sci., 118, 525–530. https://doi.org/10.21273/jashs.118.4.525
Fernández-Muñoz, R., Salinas, M., Álvarez, M., & Cuartero, J. (2003). Inheritance of resistance to two-spotted spider mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill. J. Am. Soc. Hortic. Sci., 128, 188–195. https://doi.org/10.21273/jashs.128.2.0188
Garzón-Tiznado, J. A., Lugo-Lujan, J. M., Hernández-Verdugo, S., Medina-López, R., Velarde-Félix, S., Portillo-Loera, J. J., & Retes-Manjarrez, J. E. (2020). Antixenosis of Mexican Landrace and Wild Tomato Populations to Bemisia tabaci. Southwest. Entomol., 45, 501–510. https://doi.org/10.3958/059.045.0218
Heinz, K. M., & Zalom, F. G. (1995). Variation in Trichome-Based Resistance to Bemisia argentifolii (Homoptera: Aleyrodidae) Oviposition on Tomato. J. Econ. Entomol., 88, 1494–1502. https://doi.org/10.1093/JEE/88.5.1494
Jablonska, B., Ammiraju, J. S. S., Bhattarai, K. K., Mantelin, S., De Ilarduya, O. M., Roberts, P. A., & Kaloshian, I. (2007). The Mi-9 Gene from Solanum arcanum Conferring Heat-Stable Resistance to Root-Knot Nematodes Is a Homolog of Mi-1. Plant Physiol., 143, 1044–1054. https://doi.org/10.1104/PP.106.089615
Levy, J., Ravindran, A., Gross, D., Tamborindeguy, C., & Pierson, E. (2011). Translocation of “Candidatus Liberibacter solanacearum”, the Zebra Chip Pathogen in Potato and Tomato. Phytopathology, 101, 1285. https://doi.org/10.1094/PHYTO-04-11-0121
Liu, D., & Trumble, J. T. (2007). Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomol. Exp. Appl., 123, 35–42. https://doi.org/10.1111/j.1570-7458.2007.00521.x
Luna-Cruz, A., Lomeli-Flores, J. R., Rodríguez-Leyva, E., Ortega-Arenas, L. D., & Huerta de La Peña, A. (2011). Toxicidad de cuatro insecticidas sobre Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) y su hospedero Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Acta zoológica mexicana, 27(3), 509-526.
Marchant, W. G., Legarrea, S., Smeda, J. R., Mutschler, M. A., & Srinivasan, R. (2020). Evaluating acylsugars-mediated resistance in tomato against Bemisia tabaci and transmission of tomato yellow leaf curl virus. Insects, 11, 842.
Mayo-Hernández, J., Ramírez-Chávez, E., Molina-Torres, J., Guillén-Cisneros, M.d.L., Rodríguez-Herrera, R., et al. (2019) Effects of Bactericera cockerelli Herbivory on Volatile Emissions of Three Varieties of Solanum lycopersicum. Plants, 8, 509. https://doi.org/10.3390/plants8110509
McDowell, E. T., Kapteyn, J., Schmidt, A., Li, C., Kang, J. H., et al. (2011). Comparative functional genomic analysis of solanum glandular trichome types. Plant Physiol., 155, 524–539. https://doi.org/10.1104/pp.110.167114
Moghe, G., Irfan, M., & Sarmah, B. (2023). Dangerous sugars: Structural diversity and functional significance of acylsugar-like defense compounds in flowering plants. Curr. Opin. Plant Biol., 73, 102348. https://doi.org/10.1016/J.PBI.2023.102348
Molki, B., Ha, P. T., Cohen, A. L., Crowder, D. W., Gang, D. R., Omsland, A., Brown, J. K., & Beyenal, H. (2019). The infection of its insect vector by bacterial plant pathogen “Candidatus Liberibacter solanacearum” is associated with altered vector physiology. Enzyme Microb. Technol., 129, 109358.
Mora, V., Ramasamy, M., Damaj, M. B., Irigoyen, S., Ancona, V., Avila, C. A., Vales, M. I., Ibanez, F., Mandadi, K. K. (2022). Identification and Characterization of Potato Zebra Chip Resistance Among Wild Solanum Species. Front Microbiol., 27(13), 857493. doi: 10.3389/fmicb.2022.857493
Nombela, G., Williamson, V. M., & Muñiz, M. (2003). The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant-Microbe Interact., 16, 645–649.
Olaniyan, O., Rodríguez-Gasol, N., Cayla, N., Michaud, E., & Wratten, S. D. (2020). Bactericera cockerelli (Sulc), a potential threat to China’s potato industry. J. Integr. Agric., 19, 338–349.
Panizzon, F. C., Vilela de Resende, J. T., Lima-Filho, R. B., de Pilati, L., Gomes, G. C., Roberto, S. R., & Da-Silva, P. R. (2022). Development of BC3F2 Tomato Genotypes with Arthropod Resistance Introgressed from Solanum habrochaites var. hirsutum (PI127826). Hortic., 8, 1217. https://doi.org/10.3390/HORTICULTURAE8121217
Paudel, S., Felton, G. W., & Rajotte, E. G. (2022). Anti-Herbivore Resistance Changes in Tomato with Elevation. J. Chem. Ecol., 48, 196–206. https://doi.org/10.1007/S10886-021-01341-3
Prager, S. M., & Trumble, J. T. (2018). Psyllids: Biology, Ecology, and Management. In Sustain. Manag. Arthropod Pests Tomato (Chapter 7): 163–181. https://doi.org/10.1016/B978-0-12-802441-6.00007-3
Rakha, M., Bouba, N., Ramasamy, S., Regnard, J. L., & Hanson, P. (2017). Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet. Resour. Crop Evol., 64, 1011–1022. https://doi.org/10.1007/s10722-016-0421-0
Rodríguez-López, M. J., Moriones, E., Fernández-Muñoz, R. (2020) An Acylsucrose-Producing Tomato Line Derived from the Wild Species Solanum pimpinellifolium Decreases Fitness of the Whitefly Trialeurodes vaporariorum. Insects, 11, 616. https://doi.org/10.3390/insects11090616
Roque, A., Delgado-Ortiz, J. C., Beltrán-Beache, M., Ochoa-Fuentes, Y., & Cerna-Chávez, E. (2021). Parámetros agronómicos del tomate (Solanum lycopersicum L.) inoculado con “Candidatus Liberibacter solanacearum” y tratados con fosfitos. Ecosistemas y Recur. Agropecu. 8. https://doi.org/10.19136/era.a8n1.2552
Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., & Williamson, V. M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci., 95, 9750–9754. https://doi.org/10.1073/pnas.95.17.9750
Sánchez-Peña, P., Oyama, K., Núñez-Farfán, J., Fornoni, J., Hernández-Verdugo, S., Márquez-Guzmán, J., & Garzón-Tiznado, J. A. (2006). Sources of resistance to whitefly (Bemisia spp.) in wild populations of Solanum lycopersicum var. cerasiforme (Dunal) spooner G.J. Anderson et R.K. Jansen in Northwestern Mexico. Genet. Resour. Crop Evol., 53, 711–719. https://doi.org/10.1007/s10722-004-3943-9
Savi, P. J., Moraes, G. J. D., Junior, A. L. B., Melville, C. C., Carvalho, R. F., Lourenção, A. L., & Andrade, D. J. (2019). Impact of leaflet trichomes on settlement and oviposition of Tetranychus evansi (Acari: Tetranychidae) in African and South American tomatoes. Syst. Appl. Acarol., 24, 2559–2576.
Szczepaniec, A., Varela, K. A., Kiani, M., Paetzold, L., & Rush, C. M. (2019). Incidence of resistance to neonicotinoid insecticides in Bactericera cockerelli across Southwest U.S. Crop Prot., 116, 188–195. https://doi.org/10.1016/j.cropro.2018.11.001
Thomas, K. L., Jones, D. C., Kumarasinghe, L. B., Richmond, J. E., Gill, G. S. C., & Bullians, M. S. (2011). Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. New Zeal. Plant Prot., 64, 259–268. https://doi.org/10.30843/nzpp.2011.64.6008
Vargas-Madríz, H., Bautista-Martínez, N., Vera-Graziano, J., García-Gutiérrez, C., & Chavarín-Palacio, C. (2013). Morphometrics of Eggs, Nymphs, and Adults of Bactericera cockerelli (Hemiptera: Triozidae), Grown on Two Varieties of Tomato Under Greenhouse Conditions. Florida Entomologist, 96(1), 71-79. https://doi.org/10.1653/024.096.0110
Vereijssen, J. (2020). Ecology and management of Bactericera cockerelli and Candidatus Liberibacter solanacearum in New Zealand. J. Integr. Agric., 19, 333–337. https://doi.org/10.1016/S2095-3119(19)62641-9
Walker, P. W., Allen, G. R., Tegg, R. S., White, L. R., & Wilson, C. R. (2015). The tomato potato psyllid, Bactericera cockerelli (Šulc, 1909) (Hemiptera: Triozidae): A review of the threat of the psyllid to Australian solanaceous crop industries and surveillance for incursions in potato crops. Austral Entomol., 54, 339–349. https://doi.org/10.1111/AEN.12129
Wang, F., Park, Y. L., & Gutensohn, M. (2021). Epidermis-Specific Metabolic Engineering of Sesquiterpene Formation in Tomato Affects the Performance of Potato Aphid Macrosiphum euphorbiae. Front. Plant Sci., 12, 3052. https://doi.org/10.3389/FPLS.2021.793313
Workneh, F., Trees, J. L., Paetzold, L., Badillo-Vargas, I. E., & Rush, C. M. (2020). Impact of ‘Candidatus Liberibacter solanacearum’ haplotypes on sprout emergence and growth from infected seed tubers. Crop Prot., 105462. https://doi.org/10.1016/j.cropro.2020.105462
Yang, X. B., & Liu, T. X. (2009). Life history and life tables of bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environ. Entomol., 38, 1661–1667. https://doi.org/10.1603/022.038.0619
Yang, X. B., Zhang, Y. M., Hua, L., & Liu, T. X. (2010). Life history and life tables of Bactericera cockerelli (Hemiptera: Psyllidae) on potato under laboratory and field conditions in the Lower Rio Grande Valley of Texas. J. Econ. Entomol., 103, 1729–1734. https://doi.org/10.1603/EC10083
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).