Extracto metanólico de Crotalaria longirostrata: Identificación de metabolitos secundarios y su efecto insecticida

Autores/as

  • Henry López López Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Buenavista, Saltillo, Coahuila
  • Mariana Beltrán Beache Universidad Autónoma de Aguascalientes. Centro de Ciencias Agropecuarias-Departamento de Fitotecnia. Posta Zootécnica, C.P. 20700. Jesús María, Aguascalientes
  • Yisa María Ochoa Fuentes Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Buenavista, Saltillo, Coahuila.
  • Epifanio Castro del Ángel Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Buenavista, Saltillo, Coahuila.
  • Ernesto Cerna Chávez Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Buenavista, Saltillo, Coahuila.
  • Juan Delgado Conacyt-UAAAN, Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro (UAAAN). Calzada Antonio Narro 1923, CP. 25315. Buenavista, Saltillo, Coahuila

DOI:

https://doi.org/10.17268/sci.agropecu.2022.007

Palabras clave:

Chipilín, Alcaloide pirrolizidínico, iminoazúcar, mortalidad, psílido del tomate, control biológico

Resumen

Las complicaciones ocasionadas por la generación de resistencia en el psílido Bactericera cockerelli por los plaguicidas químicos, plantean la necesidad del uso alternativo de productos que reduzcan la resistencia y garanticen un mejor control. La especie Crotalaria longirostrata es una fuente de metabolitos secundarios, que presentan posible actividad contra insectos plaga. El objetivo de la investigación fue identificar los compuestos del extracto metanólico crudo de hojas de C. longirostrata, así como evaluar su actividad biológica sobre ninfas de B. cockerelli. Se identificaron 25 compuestos por análisis de Cromatografía de Gases acoplada a Espectrometría de Masas (GC-MS); de los cuales, el de mayor abundancia fue el 1β,2β-epoxy-1α-metoximetil-8α-pirrolizidina; un alcaloide del grupo de las iminoazúcares, reportándose por primera vez en C. longirostrata, del cual se prepararon concentraciones desde 2 a 30 mg/mL del extracto metanólico para evaluar sobre ninfas de B. cockerelli. Observándose que a las 48 h se presentó una mortalidad de 73,2%-100% en los tratamientos de 8, 12, 16, 20 y 30 mg/mL. La concentración letal media (CL50) fue de 4,78 mg/mL y CL95 14,52 mg/mL. Los resultados obtenidos con el extracto metanólico de hojas de C. longirostrata para el control del insecto B. cockerelli sugieren que puede ser empleado como un insecticida de origen botánico alternativo al manejo del insecto.

Citas

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.

Ali, A., Javaid, A., & Shoaib, A. (2017). GC-MS analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha, 35, 1–8.

Ara, I., Shinwari, M. M. A., Rashed, S. A., & Bakir, M. A. (2013). Evaluation of Antimicrobial Properties of Two Different Extracts of Juglans regia Tree Bark and Search for Their Compounds Using Gas Chromatography-Mass Spectrum. International Journal of Biology, 5(2), 92–102.

Barrios-Díaz, B., Arellano-Fuentes, M. E., Vázquez-Huerta, G., Barrios-Díaz, J. M., Berdeja-Arbeu, R., & Hernández-Tapia, M. del R. (2016). Control alternativo de paratrioza (Bactericera cockerelli Sulc.) en chile serrano (Capsicum annuum L.). Entomología mexicana, 3(2014), 146–152.

Banaras, S., Javaid, A., & Khan, I. H. (2020). Potential antifungal constituents of Sonchus oleraceous against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24(5), 1376–1382.

Banaras, S., Javaid, A., & Khan, I. H. (2021). Bioassays Guided Fractionation of Ageratum conyzoides Extract for the Identification of Natural Antifungal Compounds against Macrophomina phaseolina. International Journal of Agriculture and Biology, 25(4), 761–767.

Beltran, B. M., Cerna, C. E., Delgado, O. J. C., & Ochoa, F. Y. M. (2015). Evaluación de la actividad insecticida de Heliopsis longipes (A. Gray) S. F. Blake sobre ninfas de Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). Investigación y Ciencia, 23(66), 12–15.

Carmo-Sousa, M., Garcia, R. B., Wulff, N. A., Fereres, A., & Miranda, M. P. (2020). Drench application of systemic insecticides disrupts probing behavior of diaphorina citri (Hemiptera: Liviidae) and inoculation of candidatus liberibacter asiaticus. Insects, 11(5), 1–12.

Casimiro, D. A., Fechine, J., Dos Santos, P. F., Castello, M. V. S., De Fátima, M., Subrinho, F. L., Braz-Filho, R., & Da Silva, M. S. (2013). Structural elucidation and NMR assignments of a new pyrrolizidine alkaloid from Crotalaria vitellina Ker Gawl. Magnetic Resonance in Chemistry, 51(8), 497–499.

Castañeda-Ramírez, G. S., Torres-Acosta, J. F. de J., Sandoval-Castro, C. A., Borges-Argáez, R., Cáceres-Farfán, M., Mancilla-Montelongo, G., & Mathieu, C. (2019). Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Veterinary Parasitology, 270, 13–19.

Cerna, E., Ail, C., Landeros, J., Sanchez, S., Badii, M., Aguirre, L., & Ochoa, Y. (2012). Comparison of toxicity and selectivity of the pest Bactericera cockerelli and its predator Chrysoperla carnea. Agrociencia, 46(8), 783–793.

Cerna, E., Beltrán, M., Ochoa, Y. M., Hernández, O., & Delgado, J. C. (2021). Bactericera cockerelli vector de Candidatus Liberibacter solanacearum, morfometría y haplotipos en poblaciones de México. Revista Mexicana de Ciencias Agrícolas, 26, 81–94.

Chen, T., Mei, N., & Fu, P.P. (2010). Genotoxicity of pyrrolizidine alkaloids. Journal of Applied Toxicology, 30(3), 183–196.

Cogni, R., & Trigo, J. R. (2016). Pyrrolizidine Alkaloids Negatively Affect a Generalist Herbivore Feeding on the Chemically Protected Legume Crotalaria pallida. Neotropical Entomology, 45(3), 252–257.

Cruz-Rodríguez, R. I., Cruz, S. A., Ruiz, L. N., Pérez, V. J. I., Esquinca, A. H. A., & Meza, G. R. (2020). Potential Application of Crotalaria longirostrata Branch Extract to Reduce the Severity of Disease Caused by Fusarium. Agronomy, 10, 1-11.

Cruz-Rodríguez, R. I., Meza, G. R., Rodríguez, M. M. A., Arias, C. C., Mancilla, M. N. A., et al. (2017). Antifungal activity of Crotalaria longirostrata Hook. & Arn. extracts against phytopathogen fungi from maize. Gayana Botanica, 74(1), 167–175.

Dehoux-Baudoin, C., & Génisson, Y. (2019). C-Branched Imino Sugars: Synthesis and Biological Relevance. European Journal of Organic Chemistry, 2019(30), 4765–4777.

Del Prado-Vera, I. C., Franco-Navarro, F., & Godínez-Vidal, D. (2018). Plant Parasitic Nematodes and Management Strategies of Major Crops in Mexico. In S.S. & C.J. (Eds.), Plant Parasitic Nematodes in Sustainable Agriculture of North América. Sustainability in Plant and Crop Protection. Springer International Publishing. Pp. 31–68.

Delgado-Oramas, B. P., González, M. I., Rodríguez, H. M. G., & Pino, P. O. (2020). La resistencia inducida por productos derivados de plantas: alternativa para el manejo de plagas agrícolas. Revista de Protección Vegetal, 35(3), 1–12.

Delgado-Ortiz, J. C., Beltrán-Beache, M., Cerna-Chávez, E., Aguirre-Uribe, L. A., Landero-Flores, J., Rodríguez-Pagaza, Y., & Ochoa-Fuentes, Y. M. (2019). Candidatus Liberibacter solanacearum patógeno vascular de solanáceas: Diagnóstico y control. Revista Especializada en Ciencias Químico-Biológicas, 22, 1–12.

Diaz, G. J. (2015). Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins, 7(12), 5408–5416.

Dreger, M., Stanislawska, M., Krajewska-Patan, A., Mielcarek, S., Mikolajczak, P. L., & Buchwald, W. (2009). Pyrrolizidine alkaloids - chemistry, biosynthesis, pathway, toxicity, safety and perspectives of medicinal usage. Herba Polonica, 55(4), 127–147.

Esposito, A., D’alonzo, D., De Fenza, M., De Gregorio, E., Tamanini, A., et al. (2020). Synthesis and therapeutic applications of iminosugars in cystic fibrosis. International Journal of Molecular Sciences, 21(9), 1-34.

Farag, M., Ahmed, M. H. M., Yousef, H., & Abdel-Rahman, A. A. H. (2011). Repellent and insecticidal activities of Melia azedarach L. against Cotton leafworm, Spodoptera littoralis (Boisd.). Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 66 C(3–4), 129–135.

Farag, S. M., Essa, E. E., Alharbi, S. A., Alfarraj, S., & Abu El-Hassan, G. M. M. (2021). Agro-waste derived compounds (flax and black seed peels): Toxicological effect against the West Nile virus vector, Culex pipiens L. with special reference to GC–MS analysis. Saudi Journal of Biological Sciences, 28(9), 5261–5267.

Fletcher, M. T., McKenzie, R. A., Blaney, B. J., & Reichmann, K. G. (2009). Pyrrolizidine alkaloids in Crotalaria taxa from Northern Australia: Risk to grazing livestock. Journal of Agricultural and Food Chemistry, 57(1), 311–319.

Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), 10242–10297.

Gutiérrez-Ramírez, J. A., Betancourt-Galindo, R., Aguirre-Uribe, L. A., Cerna-Chávez, E., Sandoval-Rangel, A., et al. (2021). Insecticidal Effect of Zinc Oxide and Titanium Dioxide Nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on Tomato Solanum lycopersicum. Agronomy, 11(8), 1-20.

Hartmann, T., Theuring, C., Beuerle, T., Ernst, L., Singer, M. S., & Bernays, E. A. (2004). Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. Journal of Chemical Ecology, 30(2), 229–254.

IRAC. (2014). susceptibility test method 032. Insecticide Resistance Action Committee.

Jiang, H., Wang, J., Song, L., Cao, X., Yao, X., Tang, F., & Yue, Y. (2018). Chemical composition of an insecticidal extract from Robinia pseudacacia L. seeds and it’s efficacy against aphids in oilseed rape. Crop Protection, 104, 1–6.

Jiménez, A. D. M., & Grusak, M. A. (2015). Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods for Human Nutrition, 70(4), 357–364.

Joshi, T., Pandey, S. C., Maiti, P., Tripathi, M., Paliwal, A., Nand, M., Sharma, P., Samant, M., Pande, V., & Chandra, S. (2021). Antimicrobial activity of methanolic extracts of Vernonia cinerea against Xanthomonas oryzae and identification of their compounds using in silico techniques. PLoS ONE, 16(6), 1–15.

Kolomiiets, Y. V., Grygoryuk, I. P., Butsenko, L. M., & Kalinichenko, A. V. (2019). Biotechnological control methods against phytopathogenic bacteria in Tomatoes. Applied Ecology and Environmental Research, 17(2), 3215–3230.

Lawal, O., Opoku, A., & Ogunwande, I. (2015). Phytoconstituents and Insecticidal Activity of Different Solvent Leaf Extracts of Chromolaena odorata L., against Sitophilus zeamais (Coleoptera: Curculionidae). European Journal of Medicinal Plants, 5(3), 237–247.

Liu, X., Klinkhamer, P. G. L., & Vrieling, K. (2017). The effect of structurally related metabolites on insect herbivores: A case study on pyrrolizidine alkaloids and western flower thrips. Phytochemistry, 138, 93–103.

Lozano, G. J., Salas, L. K. Y., Lara, H. A., España, L. M. P., Balleza, C. J., & Hernández, M. C. A. (2018). Bactericera cockerelli Sulc. 1909 (Hemiptera: Triozidae) en doce cultivares de chile en acolchados de color verde y gris- plata, en Morelos, Zacatecas, México. Entomología Agrícola, 5, 419–423.

Macel, M., Bruinsma, M., Dijkstra, S. M., Ooijendijk, T., Niemeyer, H. M., & Klinkhamer, P. G. L. (2005). Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. Journal of Chemical Ecology, 31(7), 1493–1508.

Mala, R., Celsia, R. A. S., Devi, M. S., & Geerthika, S. (2017). Comparison on bactericidal and cytotoxic effect of silver na-noparticles synthesized by different methods. IOP Conference Series: Materials Science and Engineering, 225, 1–11.

Mateos-Maces, L., Chávez-Servia, J. L., Vera-Guzmán, A. M., Aquino-Bolaños, E. N., Alba-Jiménez, J. E., & Villagómez-González, B. B. (2020). Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants, 9(541), 1–24.

Miranda-Granados, J., Chacón, C., Ruiz-Lau, N., Vargas-Díaz, M. E., Zepeda, L. G., et al. (2018). Alternative use of extracts of Chipilín leaves (Crotalaria longirostrata Hook. & Arn) as antimicrobial. Sustainability, 10(3), 1-7.

Mutale-joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y., & Hicham, E. A. (2020). Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports, 10(1), 1–12.

Obembe, O. M., & Kayode, J. (2013). Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as protectant of cowpea seeds from Callosobruchus maculatus infestation. Pakistan Journal of Biological Sciences, 16(4), 175–179.

Okonkwo, C. O., & Moses, S. E. (2017). Insecticidal Potentials and Chemical Composition of Ethanol Extracts from the Leaves of Acanthus montanus on Selected Insect Pests. Journal of Chemical and Pharmaceutical Research, 9(10), 111–116.

Páez-León, S., Carrillo-Morales, M., Gómez-Rodríguez, O., López-Guillén, G., Castañeda-Ramírez, G., Hernández-Núñez, E., Aguilar-Marcelino, L. (2022). Nematicidal activity of leaf extract of Moringa oleifera Lam. against Haemonchus contortus and Nacobbus aberrans. Journal of Helminthology, 96, E13.

Peñaloza, A. G. C., & Peláez, J. C. A. (2014). Evaluación de la actividad biológica de extractos de semillas de Crotalaria pallida (cascabelito) sobre el modelo Drosophila melanogaster. Revista Cubana de Plantas Medicinales, 19(3), 144–153.

Peñaloza, A. G. C., & Peláez, J. C. A. (2017). Aislamiento del estigmasterol de las semillas de Crotalaria juncea L. (cascabelito) y su bioactividad sobre Drosophila melanogaster. Revista Cubana de Plantas Medicinales, 22(3). 1-10.

Prada, F., Stashenko, E. E., & Martínez, J. R. (2020). LC/MS study of the diversity and distribution of pyrrolizidine alkaloids in Crotalaria species growing in Colombia. Journal of Separation Science, 43(23), 4322–4337.

Rafiq, M., Javaid, A., & Shoaib, A. (2021). Antifungal activity of methanolic leaf extract of Carthamus oxycantha against Rhizoctonia solani. Pakistan Journal of Botany, 53(3), 1133–1139.

Ramesh, N. G. (2020). Iminosugars. In Carbohydrates in Drug Discovery and Development Elsevier Inc. Pp. 331–381.

Ravi, R., Husna Zulkrnin, N. S., Rozhan, N. N., Nik Yusoff, N. R., Mat Rasat, M. S., et al. (2018). Evaluation of Two Different Solvents for Azolla pinnata Extracts on Chemical Compositions and Larvicidal Activity against Aedes albopictus (Diptera: Culicidae). Journal of Chemistry, 2018, 1–8.

Rech, C., Ribeiro, L. P., Bento, J. M. S., Pott, C. A., & Nardi, C. (2022). Monocrotaline presence in the Crotalaria (Fabaceae) plant genus and its influence on arthropods in agroecosystems. Brazilian Journal of Biology, 84, 1–14.

Rivera-Martínez, R., Ramírez-Dávila, J. F., & Acosta-Guadarrama, A. D. (2018). Distribución espacial de las poblaciones de huevos de Bactericera cockerelli Sulc. en el cultivo de tomate de cáscara (Physalis ixocarpa Brot.). Acta Universitaria, 28(5), 24–33.

Robinson, B., & Gummow, B. (2015). A field investigation into a suspected outbreak of pyrrolizidine alkaloid toxicosis in horses in western Queensland. Preventive Veterinary Medicine, 118(4), 378–386.

Roque-Enríquez, A., Delgado-Ortiz, J.C., Beltrán-Beache, M., Ochoa-Fuentes, Y.M., & Cerna-Chávez, E. (2021). Parámetros agronómicos del tomate (Solanum lycopersicum L.) inoculado con “Candidatus Liberibacter solanacearum” y tratados con fosfitos. Ecosistemas y Recursos Agropecuarios, 8(1), e2552.

Romeh, A.A. (2013). Phytochemicals from Ficus sycomorus L. leaves act as insecticides and acaricides. African Journal of Agricultural Research, 8(27), 3571–3579.

Rovira, D., Alfaro, C., Martínez, V., & Menjívar, I. (2019). Respiration rate and shelf-life study of Crotalaria longirostrata (chipilín). Journal of Food Measurement and Characterization, 13(4), 3025–3032.

Schramm, S., Köhler, N., & Rozhon, W. (2019). Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules, 24(3), 1-44.

Sedivy, C., Dorn, S., Widmer, A., & Müller, A. (2013). Host range evolution in a selected group of osmiine bees (Hymenoptera: Megachilidae): the Boraginaceae-Fabaceae paradox. Biological Journal of the Linnean Society, 108(2), 349–360.

Solihah, I., Mardiyanto, M., Fertilita, S., Herlina, H., & Charmila, O. (2018). The Standardization of Ethanolic Extract of Tahongai Leaves (Kleinhovia hospita L.). Science and Technology Indonesia, 3(1), 14–18.

Shukla, E., Thorat, L. J., Nath, B. B., & Gaikwad, S. M. (2015). Insect trehalase: Physiological significance and potential applications. Glycobiology, 25(4), 357–367.

Sumner, K. J. C., Highet, F., Arnsdorf, Y. M., Back, E., Carnegie, M., Madden, S., et al. (2020). ‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae). Scientific Reports, 10(1), 1–12.

Tamburino, R., Sannino, L., Cafasso, D., Cantarella, C., Orrù, L., Cardi, T., et al. (2020). Cultivated Tomato (Solanum lycopersicum L.) Suffered a Severe Cytoplasmic Bottleneck during Domestication: Implications from Chloroplast Genomes. Plants, 9, 1-15.

Tay, Z. H., & Chong, K. P. (2016). The potential of papaya leaf extract in controlling Ganoderma boninense. IOP Conference Series: Earth and Environmental Science, 36, 1–7.

Tlak Gajger, I., & Dar, S. A. (2021). Plant allelochemicals as sources of insecticides. Insects, 12(3), 1-21.

Tucuch-Haas, I. J., Silva-Aguayo, G., & Rodríguez-Maciel, C. J. (2020). Oviposition of Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) on Capsicum chinense (Jacq) treated with spiromesifen or spirotetramat. Revista Fitotecnia Mexicana, 43(3), 317–323.

Tucuch-Haas, J. I., Rodríguez-Maciel, C. J., Lagunes-Tejeda, Á., Silva-Aguayo, G., Aguilar-Medel, S., Robles-Bermudez, A., & González-Camacho, J. M. (2010). Toxicidad de spiromesifen en los estados biológicos de Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Neotropical Entomology, 39(3), 436–440.

Vereijssen, J., Smith, G. R., & Weintraub, P. G. (2018). Bactericera cockerelli (Hemiptera: Triozidae) and Candidatus liberibacter solanacearum in potatoes in New Zealand: Biology, transmission, and implications for management. Journal of Integrated Pest Management, 9(1), 1–21.

Ya’kobovitz, M. K., Butters, T. D., & Cohen, E. (2016). Inhibition of α-glucosidase activity by N-deoxynojirimycin analogs in several insect phloem sap feeders. Insect Science, 23(1), 59–67.

Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., et al. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1–2), 249-261.e12.

Descargas

Publicado

2022-03-28

Cómo citar

López López, H. ., Beltrán Beache, M. ., Ochoa Fuentes, Y. M. ., Castro del Ángel, E. ., Cerna Chávez, E. ., & Delgado, J. (2022). Extracto metanólico de Crotalaria longirostrata: Identificación de metabolitos secundarios y su efecto insecticida. Scientia Agropecuaria, 13(1), 71-78. https://doi.org/10.17268/sci.agropecu.2022.007

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a