Emergence, growth and plant quality of two papaya (Carica papaya L.) genotypes inoculated with entomopathogenic fungi

Authors

  • Kenia Nayeli Barajas-Méndez Laboratorio de Control Biológico III, Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, km. 40 Autopista Colima-Manzanillo, Tecomán, Colima.
  • Felipe Abelardo Toscano-Verduzco Investigación y Desarrollo, Especialistas en Papayas S.A. de C.V., km. 2 Carretera Asmoles-Ortices, Colima.
  • Cristian Iván Delgado-Salas Investigación y Desarrollo, Especialistas en Papayas S.A. de C.V., km. 2 Carretera Asmoles-Ortices, Colima.
  • Wilberth Chan-Cupul Laboratorio de Control Biológico III, Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, km. 40 Autopista Colima-Manzanillo, Tecomán, Colima.
  • Juan Carlos Sánchez-Rangel Laboratorio de Control Biológico III, Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, km. 40 Autopista Colima-Manzanillo, Tecomán, Colima.
  • Marco Tulio Buenrostro-Nava Laboratorio de Biotecnología, Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, km. 40 Autopista Colima-Manzanillo, Tecomán, Colima.
  • Gilberto Manzo-Sánchez Laboratorio de Biotecnología, Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, km. 40 Autopista Colima-Manzanillo, Tecomán, Colima.

DOI:

https://doi.org/10.17268/sci.agropecu.2022.037

Keywords:

Biological agriculture, Entomopathogens, micromycetes, pathogenesis, nursery

Abstract

The papaya (Carica papaya L.) is an economically important crop in Mexico and Latin America. The nursery phase plays a primary role in the production process, at this stage, it is susceptible to pests and diseases. The use of biofertilizers based on entomopathogenic fungi (EF) is an alternative to produce healthy and quality seedlings, through biological agriculture. The objective was to evaluate the ability of Beauveria brongniartii and Purpureocilium lilacinum to colonize tissues, promote emergence and improve the plant quality of two papaya genotypes in nursery. An experiment with factorial design A×B was established [A = papaya genotype (hybrid '“Intenzza” and var. “Maradol”) and B = inoculation of B. brongniartii (Bb), P. lilacinum (Pl) and without microorganism]. Emergence percentage (EP), Plant Height (PH), Stem Diameter (SD), Fresh Biomass (FB) and Dry Biomass (DB), endophytism, Lignification Index (LIGI) and Dickson Quality (DQI) were quantified. EP increased (6%, P = 0.0043) with Bb inoculation. Both EF increased the PH (P = 0.00001) by 0.38 (Bb) and 0.37 cm (Pl), and the ST (P = 0.00001) by 0.24 (Bb) and 0.23 mm (Pl), respectively. Aerial and root FB (P = 0.0003) increased with Bb and Pl by 0.16 and 0.1 g, and 0.17 and 0.1 g, respectively. LIGI (P = 0.0128) and QDI (P = 0.0433) were higher with Bb. Both EF colonized different plant tissues. Bb inoculation promoted seed emergence, both EF were able to colonize endophytically different organs of the plant and favored its quality. 

References

Andrade-Rodríguez, J., Ayala-Hernández, J., Alia-Tejacal, I., Rodríguez-Mendoza, H., Acosta-Durán, C. M., & López-Martínez, V. (2008). Efecto de promotores de la emergencia y sustratos en el desarrollo de plántulas de papayo. Revista de la Facultad de Agronomía, 25(4), 617-635.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.

Baron, N. C., Souza-Pollo, A., & Rigobelo E. C. (2020). Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. PeerJ. 8:e9005.

Basilio, F., Dias, T., Santana, M. M., Melo, J., Carvalho, L., Correia, P., & Cruz, C. (2022). Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: the example of bacteria- and fungi-bases biofertilizers. Applied Soil Ecology, 178(1), 104550.

Beltrán-Pineda, M. E. (2014). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria, 15(1), 101-113.

Bhardwaj, D., Wahid-Ansari, M., Kumar-Sahoo, R., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(66), 1-10.

Bonilla, P. M. (2012). Inoculación y establecimiento endofítico de cepas de los hongos entomopatógenos Beauveria bassiana, Metarhizium anisopliae y Lecanicillium lecanii en plantas de frijol (Phaseolus vulgaris). Tesis de Licenciatura, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Colombia, 80 pp.

Caballero-Álvarez, M. W. (2012). Tecnología para el desarrollo sostenible de viveros de papaya (Carica papaya L.). Tesis de Maestría, Facultad de Ciencias Agropecuarias, Universidad Central “Martha Abreu” de las Villas, Santa Clara, Cuba, 81 pp.

Chan-Cupul, W., Juárez-González, M., Ruiz-Sánchez, E., Sánchez-Rangel, J. C., Molina-Ochoa, J., & Galindo-Velasco, E. (2018). Solubilización de fuentes inorgánicas de fósforo por micromicetos aislados de la rizosfera de papaya var. Maradol (Carica papaya L.) y su susceptibilidad a herbicidas convencionales. Revista Internacional de Contaminación Ambiental, 34(2), 281-295.

Chiquito-Contreras, R. G., Solís-Palacios, R., Reyes-Pérez, J. J., Murillo-Amador, B., Alejandre-Rosas, J., & Hernández-Montiel, L. G. (2018). Promoción del crecimiento de plantas de albahaca utilizando hongos micorrízicos arbusculares y una bacteria marina. Acta Universitaria, 28(6), 68-76.

Constantino, M., Gómez-Álvarez, R., Álvarez-Solís J. D., Pat-Fernández, J., & Espin, G. (2020). Efecto de la biofertilización y los biorreguladores en la emergencia y el crecimiento de Carica papaya L. Revista Colombiana de Biotecnología, 12(2), 103-115.

Dickson, A., Leaf, A. L., & Hosner, I. E. (1960). Quality appraisal of white spruce and white pine seedlings stock in nurseries. The Forest Chronicle, 36(1), 10-13.

Gallou, A., & Lucero, H. P., Cranenbrouck, M. S., Suárez, J. P., & Declerck, S. (2011). Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiological and Molecular Plant Pathology, 76(1), 20-26.

González, H., & Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas, 34(1), 17-31.

Hidalgo-Loggiodice, P. R., Sindoni-Vielma, M., & Méndez-Natera, J. R. (2009). Importancia de la selección y manejo adecuado de sustratos en la producción de plantas frutales en vivero. Revista UDO Agrícola, 9(2), 282-288.

Umaru, F. F., & Simarani, K. (2022). Efficacy of entomopathogenic fungal formulations against Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae) and their extracellular enzymatic activities. Toxins, 14(1), 1-14.

Jaber, L. R., & Enkerli, J. (2017). Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology, 27(1), 28-41.

Jasmitha, B. G., Honnabyraiah, M. K., Athani, S. I., Shivanna, M., Devappa, V., & Jayashree, U. (2022). The performance of papaya (Carica papaya L.) on application of different growth promotion substances under net house and open condition. The Pharma Innovation Journal 11(3), 308-313.

Jung, S. C., Martínez, A., López, J.A., & Pozo, M. J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38(6), 651-664.

Kumar, C. M., Jacob, T. K., Devasahayam, S., Thomas, S., & Geethu, C. (2018). Multifarious plant growth promotion by an entomo-pathogenic fungus Lecanicillium psalliotae. Microbiological Research, 207(1), 153-160.

Liu, Y., Yang, Y., & Wang, B. (2022). Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Scientific Reports 12(1): 1-12.

Mirafuentes, H. F., & Santamaría, B. F. (2014). MSXJ, hibrido de papaya sin carpeloidía para el sureste de México. Revista Mexicana de Ciencias Agrícolas, 7(1), 1297-1301.

Moreno-Salazar, R., Sánchez-García, I., Chan-Cupul, W., Ruiz-Sánchez, E., Hernández-Ortega, H. A., Pineda-Lucatero, J., & Figueroa-Chávez, D. (2020). Plant growth, foliar nutritional content and fruit yield of Capsicum chinense biofertilized with Purpureocillium lilacinum under greenhouse conditions. Scientia Horticulturae, 261(1), 108950.

Nesha, R., & Siddiqui Z. A. (2017). Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Scientia Horticulturae, 218(14), 258-264.

Patiño-Torres, C. O., & Sanclemente-Reyes, O. E. (2014). Los microorganismos solubilizadores de fósforo (MSF): una alternativa biotecnológica para una agricultura sostenible. Entramado, 10(2), 288-297.

Quiñonez-Aguilar, E. E., López-Pérez, L., & Rincón-Enríquez, G. (2014). Dinámica del crecimiento de papaya por efecto de la inoculación micorrízica y fertilización con fósforo. Revista Chapingo Serie Horticultura, 20(2), 223-237.

Rodríguez-Alcocer, U. J., Rodríguez-Vivas, R. I., Ojeda-Chi, M. M., Galindo-Velasco, E., & Lezama-Gutiérrez, R. (2014). Eficacia de la mezcla de dos cepas de Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) para el control de Rhipicephalus microplus en infestaciones naturales en bovinos. Tropical and Subtropical Agroecosystems, 17(2), 223-229.

Ruiz-Santiago, F. L., Ruiz-Velázquez, J. A., Hernández-Becerra, J. A., García-Jiménez, R., & Valadez-Villarreal, A. (2019). Extracción y cuantificación de clorofila en hojas comestibles del estado de Tabasco. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 4(1), 891-896.

Santamaria, F., Gafuentes, F., Zavala, M. J., & Vázquez, E. (2015). Calidad de frutos de materiales comerciales de papaya roja producidos en Yucatán, México. Agronomía Costarricence, 39(1), 161-167.

Secretaría de Agricultura y Desarrollo Rural (SADER). (2021). México principal exportador de papaya en el mundo; crece producción 3.2 por ciento en el 2020. Gobierno de México. https://www.gob.mx/agricultura/prensa/mexico-principal-exportador-de-papaya-en-el-mundo-crece-produccion-3-2-por-ciento-en-2020?idiom=es

Semillas del Caribe. (2020). Ficha técnica del híbrido ‘“Intenzza”’. https://www.semillasdelcaribe.com.mx/producto/intenzza/

Serbelló-Guzmán, F. G., Mesa-Reynaldo, J. R., & Soto-Ortiz, R. (2014). Efecto de diferentes alternativas biológicas, sobre el porcentaje y velocidad de emergencia de las semillas de fruta bomba (Carica papaya L.). Agroecosistemas, 2(1), 247-253.

Suárez-Quiroz, M. L., Mendoza-Bautista, I., Monroy-Rivera, J. A., de la Cruz-Medina, J., Angulo-Guerrero, O., & González-Ríos, O. (2013). Aislamiento, identificación y sensibilidad a antifúngicos de hongos fitopatógenos de papaya cv. Maradol (Carica papaya L.). Revista Iberoamericana de Tecnología Postcosecha, 14(2), 115-124.

Tall, S., & Meyling, N. V. (2018). Probiotics for plants? growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbial Ecology, 76(4), 1002-1008.

Toscano-Verduzco, F. A., Cedeño-Valdivia, P. A., Chan-Cupul, W., Hernández-Ortega, H. A., Ruiz-Sánchez, E., Galindo-Velasco, E., & Cruz-Crespo, E. (2020). Phosphates solubilization, indol-3-acetic acid and siderophores production by Beauveria brongniartii and its effect on growth and fruit quality of Capsicum chinense. The Journal of Horticultural Science and Biotechnology, 95(2), 235-246.

Published

2022-12-31

How to Cite

Barajas-Méndez, K. N. ., Toscano-Verduzco, F. A., Delgado-Salas, C. I. ., Chan-Cupul, W., Sánchez-Rangel, J. C. ., Buenrostro-Nava, M. T. ., & Manzo-Sánchez, G. . (2022). Emergence, growth and plant quality of two papaya (Carica papaya L.) genotypes inoculated with entomopathogenic fungi. Scientia Agropecuaria, 13(4), 411-421. https://doi.org/10.17268/sci.agropecu.2022.037

Issue

Section

Original Articles

Most read articles by the same author(s)