Defense inductors in the control of mildew (Peronospora variabilis Gaum.) in the quinoa crop: Detection, epidemiology, symptoms, characteristics and control

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2020.04.11

Keywords:

mildew, Peronospora variabilis, severity, Chenopodium quinoa, primary inoculum.

Abstract

Quinoa crop (Chenopodim quinoa Willd.) is native to the Peruvian Andes, nutritious food and it has become very important for agroexport. In Piura, the downy mildew disease appeared causing economic losses, were set as objectives: detect the primary inoculum, describe the symptoms and evaluate the effect of defense inductors in the control of downy mildew. The direct detection methodology was used to observe oospores, the treatments were; Biosar, 3Tac, Agromos + Soil set, Action FP/Pare, Metalosate and control, Area Under the Disease Progress Curve (ABCPE) was evaluated, comparisons of means were made of the Tukey test (α = 0.05). Oospores were detected in all the quinoa samples, being with greater number the var. INIA-altiplano with 96 and with lower var. passankalla with 8 oospores/100 units of seed. As a symptom, yellowish spots were observed on the upper side and gray sporulation on the underside of the leaves. The highest value of ABCPE was obtained by the control with 2,161.02; the lower values and that better controlled the mildew disease in quinoa, they were obtained with Action FP/Pare (0.5 / 0.5 L / 200L water) and Agromos + Soil set (0.25 + 0.25 L / 200 L water), with 939.8 and 1040.7 respectively.

References

Ahmed, M.H.; Abdel-Wahed, A. 2018. Evaluation of four quinoa cultivars to the infection by downy mildew under Middle Egypt conditions. Egypto Journal Phytopathology 46(1): 105-123.

Altuner, F.; Oral, E.; Kulaz, H. 2019. The impact of different sowing-times of the quinoa (Chenopodium quinoa Willd.) and its varieties on the yield and yield components in Turkey-Mardin ecology condition. Applied Ecology and Environmental Research 17(4): 10105-10117.

Bazile, D.; Pulvento, C.; Verniau, A.; et al. 2016. Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries. Frontiers in Plant Science 7: 850.

Danielsen, D.; Ames, T. 2014. Mildiu Peronospora farinosa de la quinua Chenopodium quinoa Willd. en la zona andina. Manual técnico para el estudio de la enfermedad y el patógeno. Perú: Centro Internacional de la Papa (CIP) royal danish ministry of foreign affairs the royal veterinary and agricultural university. 11 pp.

Eisa, S.; Eid, M.A.; El-Samad, E. H.; et al. 2017. Chenopodium quinoa Willd. A new cash crop halophyte for saline regions of Egypt. Aust. J. Crop Sci. 11(3): 343-351.

EL-Assiuty, E.M.; Taha, E.M.; Fahimy Z.M.; et al., 2019. Histological and molecular detections of Peronospora variabilis Gäum oospores in seeds of quinoa (Chenopodium quinoa L.). Egipto Journal Exp. Biol. (Bot) 15(2): 197-203.

Falcón. R.A.; Costales, M.D.; González P.D.; et al. 2015. Nuevos productos naturales para la agricultura: las oligosacarinas. Instituto Nacional de Ciencias Agrícolas-Cuba. Cultivos tropicales 36: 111-129.

García, E.E.; Robledo, O.A.; Benavides M.A.; et al. 2018. Efecto de elicitores de origen natural sobre plantas de tomate sometidas a estrés biótico. Revista Mexicana de Ciencias Agrícolas 20: 4211- 4221.

García, M.A.; Plazas, N. 2018. La quinua (Chenopodium quinoa Willd.) en los sistemas de producción agraria. Revista Producción + Limpia 13(1): 112-119.

Goto, Y.; Maki, N.; Ichihashi, Y.; et al. 2020. El tratamiento exógeno con glutamato induce respuestas inmunitarias en la arabidopsis. Molecular Plant-Microbe Interactions® 33(3): 474- 487.

Huamán, E.; Vásquez P. H.; Salas, L.; et al. 2017. Efecto de los abonos orgánicos y dosis de un biofertilizante en el rendimiento de quinua Chenopodium quinoa, en Chachapoyas, Amazonas. Revista de Investigación Agroproducción Sustentable 1(1): 63-69.

Hui, Y.; Zhou, J.B.; Chang, F.J.; et al. 2018. Identificación del patógeno que causa el mildiu de Chenopodium quinoa. Acta Phytopathologica Sinica 48 (3): 413-417.

Jamiołkowska, A. 2020. Natural Compounds as Elicitors of Plant Resistance Against Diseases and New Biocontrol Strategies. Agronomy 10: 173.

Khalifa, W.; Thabet, M. 2018. Variation in downy mildew (Peronospora variabilis Gäum) resistance of some quinoa (Chenopodium quinoa Willd) cultivars under Egyptian conditions. Middle East Journal of Agriculture Research, Egipto 7(2): 671-682.

Manna, M.; Achary, V.M.; Islam, T.; et al. 2016. The development of a phosphite-mediated fertilization and weed control system for rice. Scientific Reports 6: 1-13.

Navruz-Varli, S.; Sanlier, N. 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.) Journal of Cereal Science 69: 371-376.

Pintore, I.; Gilardi, G.; Gullino, M.L.; et al. 2016. Detection of mefenoxam-resistant strains of Peronospora belbahrii, the causal agent of basil downy mildew, transmitted through infected seeds. Phytoparasitica 44: 563-569.

Risco, M.A.; Mattos, C.L. 2014. Severidad de Peronospora variabilis Gäum en Chenopodium quinoa Willd. ‘Pasankalla’ como respuesta a aplicaciones de fungicidas sintéticos y bioestimulantes. UNALM. Anales Científicos 76: 382-392.

Rojas, W.; Vargas, M.A.; Pinto, P.M. 2016. La diversidad genética de la quinua: potenciales usos en el mejoramiento y agroindustria. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales 3(2): 114-124.

Sanabria, A.K. 2019. Inductores de resistencia para el manejo integrado de Phytophthora infestans (Mont.) de Bary en el cultivo de papa (Solanum tuberosum L.). Tesis de maestría. Universidad Nacional Agraria La Molina-Lima. 132 pp.

Santos, P.H.; Silveira, S.F.; Vivas, M.; et al. 2017. Alternative control to black spot disease in papaya genotypes. Summa Phytopathologica 43(1): 60-62.

Saravia, R.; Plata, G.; Gandarillas, A. 2014. Plagas y enfermedades del cultivo de quinua. Cochabamba, BO.: Fundacion PROINPA. 148 pp.

Schmöckel, S.; Lightfoot, D.; Tazali, R.; et al. 2017. Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq, and SNP analyses. Frontiers in Plant Science 8: 1-12.

Shaner, G.; Finney, R.E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology 67: 1051-1056.

Silva, H.F.; Pinto, K.M.; Nascimento, L.C.; et al. 2019. Avaliação do uso de elicitores de resistência bióticos e abióticos contra a antracnose na videira (Vitis labrusca L.). Summa Phytopathologica 45(1): 70-75.

Soto, H.J.; Cadenas, G.C. 2018. Uso de inductores de defensa en la prevención de infecciones ocasionadas por Lasiodiplodia theobromae, en plantones de vid (Vitis vinifera) en Perú. Universidad Nacional Agraria La Molina-Lima. Anales Científicos 79 (2): 346-352

Soylu, S.; Uysal, A.; Choi, Y.; et al. 2020. Morphological and molecular characterization of downy mildew disease caused by Peronospora variabilis on Chenopodium album in Turkey. Australasian Plant Disease Notes. 3 pp.

Taha, E.M. 2019. Molecular detection and phylogeny of Peronospora variabilis Gäum., the causal agent of downy mildew disease of quinoa at different growth stages. Plant Cell Biotechnology and Molecular Biology 20(23-24): 1189-1200.

Testen, A.; Jiménez-Gasco, M.; Ochoa, J.B.; et al. 2014. Molecular detection of Peronospora variabilis in quinoa seed and phylogeny of the quinoa downy mildew pathogen in South America and the United States. Phytopathology 104: 379-386.

Thines, M.; Choi, Y. J. 2016. Evolution, diversity and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106(1): 6-18.

Thomas, A.; Carbone, I.; Choe, K.; et al. 2017a. Resurgence of cucurbit downy mildew in the United States: Insights from comparative genomic analysis of Pseudoperonospora cubensis. Ecol. Evol. 7(16): 6231-6246

Tkaczyk, M.; Kubiak, K.A.; Sawicki, J.; et al. 2016. The use of phosphates in forestry. Forest Research Papers 77: 76-81

Yáñez-Juárez, M.G.; López-Orona, C.A.; Ayala-Tafoya, F.; et al. 2017. Los fosfitos como alternativa para el manejo de problemas fitopatológicos. Revista Mexicana de Fitopatología 36(1): 79-94.

Published

2020-11-29

How to Cite

Aguilar, R., More-Yarleque, M. M., Rafael-Rutte, R., & Maldonado, E. (2020). Defense inductors in the control of mildew (Peronospora variabilis Gaum.) in the quinoa crop: Detection, epidemiology, symptoms, characteristics and control. Scientia Agropecuaria, 11(4), 555-563. https://doi.org/10.17268/sci.agropecu.2020.04.11

Issue

Section

Original Articles

Most read articles by the same author(s)